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Distribution functions for reversibly self-assembling spherocylinders
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We consider an equilibrium solution of hard spheres undergoing reversible self-assembly into spherocylin-
ders. Our main interest is the distribution of cylinder orientations and lengths in the nematic phase. Over a
limited range of concentrations, we find accurate numerical results for the distribution using an iterative
equation. Based on trends in this regime, a trial distribution function is introduced that allows an efficient
calculation of accurate thermodynamic data over the entire concentration range. In agreement with previous
authors, we find a first-order transition from a dilute, weakly polymerized, isotropic phase to a concentrated,
highly polymerized, nematic phadé&51063-651X98)09911-5

PACS numbd(s): 61.30—v, 64.70.Md, 87.15-v

I. INTRODUCTION a variety ofad hocassumptions. These include the use of a
Gaussian orientation distributidd 3], the restriction of rod
The theory of self-assembling filaments has application®rientations to three mutually orthogonal ax&4,15, or the
to both biology and physidd]. In ordinary cells, about 10% assumption that the rods are monodisp¢lse17).
of the protein is capable of reversible self-assembly into fila- To our knowledge, there have only been two previous
ments. These proteins, primarily responsible for the cytoattempts to derive an accurate and self-consistent length and
skeleton, include actin and tubulin. There are also examplesrientation distribution. van der Schoot and Cgt#8] ex-
from disease pathology in which normally globular proteinspanded the distribution in Legendre polynomials and solved
assemble into filaments. The best known disease of this softr the coefficients in the vicinity of the isotropic-nematic
is sickle-cell anemig2]. An improved understanding of bifurcation point. This approach was necessarily limited to
these cellular systems has been sought thrangtitro ex-  very weakly ordered phasésrder parameter less than 0)03
periments on solutions containing the minimum required forHentschke and Herzfelfl9] solved the nonlinear integral
polymerization(see, e.g.[3-5]). Of equal interest are solu- equation for the distribution using a numerical iterative
tions of smaller amphiphilic moleculefs]. A variety of  scheme, but we will show that they lacked sufficient angular
polyaromatic molecules are known to spontaneously stack teesolution to find accurate results in the nematic phase.
form cylindrical aggregates and many surfactant systems The goal of this paper is to obtain the accurate equilib-
form cylindrical micelles. Both systems exhibit liquid crystal rium distribution function, free energy, and associated ther-
phase behavior, typically an isotropic-nematic or isotropic-modynamic results for a solution of reversibly self-
hexagonal phase transition. assembling spherocylinders. We employ a phenomenological
An important feature common to systems of asymmetri-description of rod assembly and a scaled particle treatment of
cally shaped particles is the presence of a first-order phasexcluded volume effec{s]. (Use of Onsager’s second virial
transition from an isotropic phase at low concentrations to approximation instead of scaled particle theory gives less
nematic phase at high concentrations. The theory of theccurate results, but does not change our qualitative conclu-
isotropic-nematic -N) phase transition in simple lyotropic sions) We find that the nematic orientation distribution ex-
liquid crystals is well established. In a seminal paper, On-ibits approximatelyinear behavior at small angles, in con-
sager considered a monodisperse solution of hard, rigittast to previous assumptions. We also provide accurate
spherocylinders and rigorously demonstrated the existence eésults for the free energy of the nematic phase over the
an I-N transition in the long rod limi{7]. The theory has entire concentration range. In agreement with previous au-
subsequently been refined to include the effects of finitehors, we find a transition between an isotropic phase of short
length and polydispersit}8], electrostatic repulsioff], and  rods at low volume fractions and a nematic phase of long
flexibility [10] (see Refs[11] and[12] for reviews. rods at high volume fractions. The only thermodynamically
The extension of these theories to a polydisperse mixturstable nematic phase is fully polymerized and has volume
of rigid rods formed by reversible assembly is less advancedraction v =1, corresponding to the length “explosion” re-
In this case one needs to find the equilibrium distribution ofported by Odijk[17].
rods as a function of both orientation and length. Although The paper is organized as follows. In Sec. Il we present
the law of mass action can be used to reduce the distributiothe free energy of a polydisperse mixture of hard spherocyl-
to a single function of azimuthal angle, the solution for thatinders formed by the reversible, isodesmic, self-assembly of
function is qualitatively more difficult than in the monodis- spheres. In Sec. Il we derive an integral equation for the rod
perse case. Most previous research has proceeded by makidigtribution that minimizes the free energy. The integral
equation is solved iteratively, but convergence is very slow
over most of the nematic phase. In Sec. IV we present a
*Present address: Physics Department, Williams College, Willfour-parameter trial function for the rod distribution that cap-
iamstown, MA 01267. tures the essential features of the iterative solution and al-
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lows us to minimize the free energy much more rapidly. IngF[T,V,M;s,(Q)],
Sec. V we discuss some qualitative features of the solution at
high volume fractions and derive accurate closed expressions

for the free energy and mean polymerization. In Sec. VI we m mA3
calculate the pressure and other thermodynamic quantities :_[m(_l —1+> dQs,,In(47-rsU)], (4)
for the free energies of Secs. llI-V. In Sec. VIl we compare (o) (o) o

our results to an approximate solution obtained by restricting 5 Vo -
the rods to lie on three mutually orthogonal axéise so- Where A;=(Bh%/2mm)~* is the thermal wavelength of a

called XY Z mode). The paper is concluded in Sec. VIIl.  monomer20]. The third term uses the Lagrange multiplier
to enforce the normalization of the distribution. Minimiza-

tion of the free energy in Eq2) gives the ideal, isotropic
distribution s, = exp(—a/{o))/4m{c) for (a)>1, where the
A. Ideal self-assembly mean polymerization iéo) = (mA3/47)Y%exp@/2). This is
a classical result consistent with the law of mass adtin.

Il. MODEL

We begin by considering an ideal gasMfmonomers in
a volumeV and at temperatur€, capable of reversible self- . o
assembly into linear aggregates. For simplicity we assume B. Nonideal contribution to F
that isolated monomers are hard spheres of raaliasd that We assume the particles interact only through their hard-
linear aggregates are hard spherocylinders, composed ofcare excluded volume, so the nonideal contribution to the
cylinder of radiusa and lengthl with hemispherical end free energy comes exclusively from the configuration inte-
caps. Assuming that volume is conserved when a monomejral. There are no known exact results for the configuration
joins an aggregate, the length of the cylinderlis=(o integral of a polydisperse solution df spherocylinders. We
—1)Al, where Al=4a/3 and the aggregation number  use the expression derived by Cotter and Wa¢Béusing
={1,2,3,.. } is the number of constituent monomers. scaled particle theor¢SPT) (note that the independent vari-
The population of particles is characterized by the distri-able isN, not M)
butions,,(€)d(}, the mole fraction of aggregates with index

o and orientationQ) in the differential solid angledQ BFLT,V,N,s,(Q)]Jcontig
=sin(A)dad¢. It satisfies the normalizatio ,/dQs,=1. vV
We use the angular bracket to denote the mean value of a B c 5
quantity over this distribution: N BT 5 Crn
) ni —In(1 v)+2 i e 1= [’
(A)=2 | dQ s,(Q)A,(Q). (1) ®)
o=1
B=8ma’+6ma%(l)+4T, (6)

The mean aggregation numberig and the total number of
aggregates idl=M /(o). The mole fraction of unpolymer- C=4(2ma+ mwa?(l))(wad+ ma?(1)+I), 7)
ized monomer is &s;.

In this section we neglect the nonideality due to hard-core
repulsions. The Helmholtz free energy is then the sum of r=a f dQ dQ'l,s,l,s,|sin(y)
three terms 0!

; )

where (I)=Al({(o)—1) is the mean cylinder lengthy

— 3 i i i i
Fidea™ Fagg™ Fo+ A D fdQSg— 1)_ ) = n(4wa 13)( o) is the partl'cle vqlume fract,|on, anglis the
o opening angle between orientatiofisandQ)’. In polar co-
ordinates

The first term is a phenomenological description of rod as- , i o ,
sembly. We assume that assembly is isodesmic, i.e., that the €O y)=cog#)cogd’)+sin(f)sin(0")cod d—¢").
free energy decreases by a fixed amodrng for each (9)

monomer-monomer contact in an aggregate Equation (5) has the following desirable propertieg)

Forl ,=I>a, it matches Onsager’s second virial approxima-
BFIT.V.M '(I)O;SU(Q)]aggz —®o(Mm—n) tion for monodisperse rodd]. (ii) Forl,=0, it matches the
\% 0 well-known SPT and Perkus-Yevick results for hard spheres
[22]. (iii) The second virial coefficient is exadiv) It com-
1 i . . ,
= _q,om( 1— _) (3)  pares well with the recent simulation results of Bolhuis and
(o) Frenkel for monodisperse rigid spherocylinders with aspect
ratios 7<I/a<100 [23]. Figure 1 shows a comparison of
where 8=1/kgT, m=M/V is the number density of mono- their isotropic-nematic coexistence concentrations with the
mers (including those in aggregatesand n=N/V is the second virial theory of Onsager and the scaled particle theory
number density of aggregates. A positidg favors aggre- of Cotter and Wacker. There are no free parameters. Onsag-
gation. The second term in E@2) includes the classical er's second virial approximation gives values that are too
contributions due to translation and the entropy of mixing large by 20% at/a=50 and does significantly worse for
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Q
F=a(slAI)2f dQ %z

g’
XJdQ, mblﬂ(’Y”. (15)

The Lagrange multiplier has been eliminated in favor of the
normalization(12). The integrals may be simplified using the
expected axial symmetry of the distributia(Q)=g(6)
=g(m—#), so that

/2
s f 40 A(Q(Q))= 4 JO d6 s HAQ(8)  (16)

FIG. 1. Solute volume fractions at isotropic-nematic coexistence
as a function of spherocylinder aspect rati@ndN denote isotro-  @n
pic and nematic phases. Circles are simulation results of Bolhuis " )
. . . T g
and Frenke[23]. Solid lines are calculated using E@). Dashed F:a(47TSlA|)2f do sin(6)
0

lines are calculated using Onsager’'s second virial approximation. [1—g( 19)]z
smaller aspect ratios. The values obtained usingBaqgree .o g(o") ,
with the simulation results to 5% fd¢a>20 and 10% for x 0 d¢’sin(6") [1—9(19')]7\/\/('9"9 ), (47
10<1/a<20.
In the case of reversible assembly, ES). is unchanged. 1 (2=
However, the independent variable is the number of mono- W( 6’0,)EZ f do|sin(y)|. (18
0

mersM, rather than the number of spherocylindBirsso we
need the relationa=m/(o) andv = (47a3/3)m. The total

free energy is then The first term in Eq(11), — m®,, changes only the zero

of the chemical potential and has no effect on the distribu-
tion. For convenience we absorb this into the definition of
> fdQs(,—l). (10 Fii- The parameted® is twice the free energy cost per
v spherocylinder end cap, i.e., the cost to break a filament. The

The remainder of this paper is concerned with finding thediStribution depends only on the end cap enedgynd the
distribution s,(Q) that minimizesF; and calculating the Particle volume fractiorv. It must be determined by mini-
resulting thermodynamic quantities. mizing F o

Taking the functional derivativéF/8s,(Q2)=0 confirms
that the equilibrium distribution has the functional form 1. NUMERICAL SOLUTION
s,(Q)=s,9(Q)? "%, consistent with the law of mass action. FOR THE DISTRIBUTION FUNCTION
The length and orientation distribution is fully specified by
the functiong({}). Strictly speakingg is the dimer orienta-
tion distribution function, but for brevity we will refertoitas ~ In Ref.[19], Hentschke and Herzfeld derived an iterative
the distribution function since we seldom need to distinguistequation for the distribution from the functional derivative

it from s,. Completing the sums ovar, the free energy 6Ft/39=0. The integrals in Eq412)—(15) were solved by
becomes discretizing in the variable=cos(@) and performing Gauss-

Legendre integratioh24]. They found good convergence in
BF ot na’ the thermodynamic variables and located the expected
v m®y+n

Fiot=Fot I:config"_ Fagg+ A

A. Numerical difficulties

+In(4ms,) +¥—1+In| 37— isotropic-nematic transition. However, in a similar calcula-
) tion we found that the results depended sensitively on the
B/ n C({ n
+ E( 1—0) t3 1—U> is that the distribution function exhibits approximately linear
behaviorg~1— a6 over a ranged, < 0<0.1, before reach-

angular resolutiorz of the discretization. The apparent cause
where® =®,+3In(A,/a) and the four integrals to be cal- ing a plateau at small. The cutoffd, decreases rapidly with

, (13

culated are increasing concentration and may be many orders of magni-
1 tude smaller than 0.1. Since the integrals depend on
51=( f do ;) , (12) 1/(1—-9), .special care mu;t be takgn near the origin. For
1-9(Q) example, ife> 0, a calculation ofo) finds
J 40— (13 (478) f ™46 sin(6)
=s _—, =(4ms si _——
()= ] 90 gy (o) =(4msy) | POk

) 9(Q)[g(0)] o1
‘P—Slf dQ W, (19 fedee In(1/e) (19
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rather than~In(1/6;). A numerical solution using a discreti-
zation ofg must have a resolution of ord®; near the ori-
gin, while the resolution in Ref19] was e~0.02.

A related problem is that a numerical solution wifth
digits of precision ing only hasP—log,o(1/6,) digits of
precision in 1/(+-g). Even P=32 turns out to be inad-
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5F ’ ! .

5—77=2(51AI)2(e’7+2e2’7)j dQ’(e” +e?7)|sin(y)|.
(29)

Equation(24) is a nonlinear integral equation fax It cannot
be solved in closed form, but it may be used as the basis for

equate for most cases of interest. In Secs. Ill B and Ill C wean iterative solution

present an iterative scheme and a discretization that avoids

these difficulties.

B. Iterative equation

The numerical precision lost when working wighis pre-
served if we instead work with the fielg=In[g/(1—g)]. The
inverse transformation ig=e”/(1+e7). Note that while

=In(1+e” ! ! 5<U><i> "y
n=In(1+e )+sl(e”+2e2’7) @ 57 +s,e
16B( n 18C( n \? 30
S 268p\1-v] 3éyp\1-v/ | (30

where thejth iterate »1) is substituted into the right-hand

0<g<1, 7 is not bounded. This is an additional advantageside to generate;U % on the left. Many different iterative
since we will use an iterative procedure. The integrals in Egsg¢quations can be derived from E@4). We find empirically

(12)—(15) become

-1
sl=(f dQ (1+e?)| (20)
<U’>:Slf dQ (1+e7)?, (22)

qf:slf dQ (e”+e?*")[p—In(1+e7)], (22

an(slAI)Zf dQ (e”+e2”)f dQ’ (e” +e27")|sin(y)|,
(23)
where we have introduced the shorthand notatigng(Q2)

and »'=7(Q"). Taking a functional derivative of Eq11)
with respect ton gives

Oz—iﬁé—s eV +s,[ n—In(1+e”)](e7+2€?7)
<0’> 57] 1 1L 7
1B n 18C( n \2 o4
260\ 1=0) T35, 10 @9
where
- 3 n no\2
O=d+In(47s))+¥+In - +Bl_U+C(1_U) :
(25)
B _omaral X9, 4 26
sy O Ty Ty 29
é6C o)
o 3 2 25 97
p (3mac+2ma~(l)+I')4ma“Al P
3 2 o
+4(2ma>+ma(l)) py (27)
(o) >
5—7]=—sle”<a)+251(e”+e 7), (28

that Eq.(30) gives a monotonic decrease in the free energy
with each iteration and has no spurious singular behavior.

C. Discretization

To solve the problem of resolution at sméJldiscussed in
Sec. llIA, we convert to the logarithmic variable=
—In(26/7) and make a uniform discretization en The in-
verse transformation i8= (r/2)exp(u). The integral over
an axially symmetric functioA becomes

v

7T/2d . B Ocd T s ( u)
fo Bsm(a)A(a)—fo UEE S|n2e A(u).

(31)

This transformation is only useful &(u) goes to a constant
A(U= U )~A(Unay for some ug,>1 [i.e., A< 0y
~A(bin) for 0<6,,i,<<1]. Then we can use the following
approximate result at the upper limit of integration:

fx duze‘“sin ze‘u A(u)~fc
Umax 2 2 u

max

2

A( umax)

dul Zeu
Uze

1fm _, 2
:E Ee max| A(Umay) -

(32)
The usual discretization oN,, equally spaced points is

J’umaxd m U T —ulp
. u2e S|n2e (u)

T Ny N

=—Au, xj’e“iS|n(—e“J>A(uj), (33
25 & 2

whereu;=(j—1)Au, Au:umaX/(Nu—l),xizx,’\‘uz1/2, and
xj’ﬂ’Nu:l. Combining these results gives

NU
fo /2d6 sin(¢9)A(6P)=Auzl X;0;sin(6;)A(u;), (34
=

where x;=1/2, Xj+1n,= 1, xNu=(1+ 1/Au)/2, and 6,
=(m/2)expy;). In the numerical calculations discussed
below, it must be verifieé posteriorithat all integrands are
approximately constant near,,,. The application of this
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TABLE I. Solute volume fractions discussed in the text.

d Vmin Ve ViltJB Vﬁgar
3 0.352 0.358 0.370 0.389
10 0.083 0.084 0.103 0.114

discretization to Eqs(20)—(22) is straightforward, but Egs.
(23) and (29) have an additional complication due to the
term |sin(y)|:

NU
C=a(4ms;AlIAU)ZD, X 6; sin(6,)h,;
=

Ny
ijl Xj 91 Sln(HJ)hJW,J ,

(35
T
5—7](ui) =2(s;Al)%(e”i+2e?M) 47 Au
NIJ
ijl X; 0;sin( ;) ;W , (36)

where 7;= n(u;), h;=exp(y)+exp(2z) andW;; is the dis-
cretized kerne[see Eq(18)]

Ng
wij=A¢>k§1 Isin y(6;,6;, 1], (37)

with ¢ =kA¢ andAp=27/N,. We takeN,=1024. It is
convenient to calculate and store the values\gf prior to
iterating Eq.(30).

We typically useN,= 128 points. As discussed in the next

subsection, the accuracy was checked by comparing with the

results forN,=64. We also verified that the results were
independent of the value af,,, over the range 18 u,,,
=<24. Our criterion for convergence is that the change ia
less than 108 per iteration.

D. Results

ERIC M. KRAMER AND JUDITH HERZFELD
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FIG. 2. Nematic distribution function calculated at three differ-
ent solute volume fractiongt=0.352(—), v=0.358(--*), andv
=0.365 (---), with ®=3. The inset shows; to emphasize the
small-angle behavior.

quires a sharply peaked initial condition such@®=0.3
+0.699 exp(-36).

In the isotropic phase convergence requires fewer than
200 iterations 2 sec on an IBM RS/6000 compuxefrhe
resulting distribution function is approximately constant,
with small systematic deviations due to the finite resolution
of the discretization. FON,=64 andu,,,;,=24, the devia-
tions are of relative magnitude 0.1%. Increasing the num-
ber of points toN,=128 or decreasing,,,x 10 10 decreases
the magnitude of the deviations t60.01%.

We make a further check on the accuracy of our isotropic
phase results using the following calculation. In the isotropic
phaseg(6)=g, and the integrals in Eq$12)—(15) can be
solved exactly,

1

_1-g _
1-9,’

S1T 4qq '

_ 9iin(g)

(o) 1-g,

r %aAI2(<0>—1)2.

Substituting into Eq(11) gives F{T,V,M,®;g,]. We then
find the value ofg, that minimizesF,, using a downhill

Since the iterative scheme is explicitly a single-phase calsimplex minimization routin¢24]. This allows us to calcu-
culation, we reserve the discussion of phase coexistence untite all quantities with a relative accuracy of 0 A com-
Sec. VI. In this section the ‘“stable phase” refers to theparison with the results of the iterative scheme shows that

single (isotropic or nematicphase that has the lowest free

the discretization usiny,,= 64 andu,,,,=24 gives values of

energy at a given volume fraction. This should not be cong, andFy that are too large by-1%. HalvingAu improves

fused with global thermodynamic stability.

agreement to-0.1%.

As expected, the iterative scheme converges to an isotro- In the nematic phase, we can only find a converged dis-
pic phase at low volume fractions and a nematic phase dtibution at volume fractions near.. Figure 2 shows the
high volume fractions. There is also a considerable rangéistributionsg and » for three values ok at $=3. The
over which either phase may be found, depending on thdistributiong is distinctly non-Gaussian. Note the approxi-

initial choice forg. Table | shows some representative val-

ues of the volume fraction fob=3 and® =10. The mini-
mum volume fraction for which we could find a nematic
phase i i, - The volume fraction at which the isotropic and
nematic free energies are equabjs so the nematic phase is
metastable fouv ,,<v<wv.. Aboveuv the isotropic phase is

mately linear approach to 1 at smal] with a cutoff that
decreases exponentially with the volume fraction. At
=0.358,0,~0.002. This illustrates the problem discussed in
Sec. Il A. It would be impractical to resolve the cutoff using
a uniform discretization irg.

The number of iterations needed to find convergence of

metastable. Near, the basin of attraction for the isotropic the nematic distribution grows exponentially with increasing
phase is large, so convergence to a nematic distribution resolute volume fraction. After about=1000 iterations the
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general shape aj(6) is well established, including the lin- ~ _ Sirk( ') _
ear regime and a plateau at smlbut the cutoff is typically W(6,0")=sin(6) 1+Cm[1—2 Sirf(0)1],
much larger than its converged value. The main effect of (40)

further iteration is to decrease the value of the cutoff, ap-

proximately as8{")~0.01f%2, until it reaches a true limiting hereco his form | d by th | .
value. The problem arises because the limiting value de¥’ erec=13. This form is suggested by the Taylor series

creases exponentially with increasing volume fractigj for W m powers of sme_), given byF_l and_derlved n
~10"17% (see Fig. 2 The number of iterations needed for APPendix B. A comparison oW with W using MATH-
the plateau to achieve its asymptotic form therefore increasdgVATICA (Wolfram Media, Cambridgeshows that the rela-
exponentially with volume fraction. Choosing a limit on tive error of Eq.(40) is less than 7% over the whole domain.
CPU time of about 1 day gives a practical upper boufjg, ' Appendix C we solve Eq(17) in terms of elementary
on the volume fractions for which the nematic distribution functions of{a,R,6,,65}, with the exception of one one-
function can be determined. Values of; for =3 and dimensional integral to be calculated numerically.

® =10 are listed in Table I. We see that the iterative schem The trial function solution requires the minimization of
converges over a range of only 0.02 in volume fraction, in-?:tOt with respect to the four_pargmete{rm,R,'ol., 02}. at fixed
dependent ob,. Attempts to speed convergence using an? and ®. We use a downhill simplex minimization routine

initial condition that anticipates the smallness of the cutoff,Erz.s]' té%loivh\;(r)ggt]:r}' f(ra%ctlznse vieareco;/ze_r 1the |sgtropf:1dls-
show only modest gains in speed. lout 1z y6,=6,, R=1, and g,=

In the nematic phase, the free energy converges signif'%-_a sin(y). The value ofg, is not identical to the value

cantly faster than the distribution function. As a restil, ound in Sec. Il D due to the approximation used here for

can be reliably determined for volume fractions greater thaﬁﬁ/ 0 t())Lito /three rezgrwg eflfﬁrs “<‘ff.> ar:jd F“}{t are f;(t)hltytoalnfd
v’ by as much as 0.25, typically after 4@erations[see . -~ > [ESPECUVEly. The main advantage of Ine tna’ func-

\ o . tion is in the treatment of the nematic phase. When conver-
Fig. 6(b) below]. At still higher concentrationsF,, con-

verges too slowly and we need a new method of solution. | ence can be founee below, the algorithm requires about

) . , . . .1 sec of CPU time.
the next section we introduce a trial function to approximate
the distributiong. The trial function approach is much faster
than the iterative scheme and it allows us to minimizg B. Determination of R and @, in the nematic phase
over the full range of volume fractions. It also clarifies the

. ) . Our first attempts to minimizE ., with respect to the four
problems of convergence encountered in this sectsee b ot P

parameters{«,R, 6,,6,} depended sensitively on the nu-

Sec. IVB). merical precision of the calculation. To understand this sen-

sitivity, we expand the expressions in Appendixes A and C
IV. TRIAL FUNCTION FOR THE DISTRIBUTION for s, (o), ¥, andT to leading order ing;. Each has the
form
A. Trial function and approximate W
Wg seek an alternative tq the ite_rative scheme of Sec. lll. (a,R,01,05)=1o| a,0,0=—IN(6;)+ ==
To this end we present a trial function fgr 2R
1-aRsin(0;)=g9, 0<6<6, +0111(e,R, 01,65). (41)

As a result, the independent determinationFoaind 6, re-
quires a precision of orde#; . This does not pose a difficulty
nearv., but #, decreases exponentially with increasing vol-
where we require € g, andg,< 1. This expression has four ume fraction. Table | lists the approximate upper boufﬁ@elr
free parameter§a,R, 6;,0,}. It was chosen because it cap- on the range of volume fractions accessible to the four-
tures all the important qualitative features of the nematigparameter solution ab=3 and® =10. Even with 32 sig-
distribution, including an approximately linear approach to 1nificant figures,R and 6, can only be independently deter-
and a plateau at small angles. We will see tRatl in the  mined over a range of about 0.03 in volume fraction. Outside
nematic phase, sg is discontinuous atd;. Attempts to this range, numerical techniques can only reliably determine
eliminate any one of the parametéesg., by settindR=1 or  the three parametefs,{,d,}. We do not consider this to be
6,= 0,) lead to poor agreement with the distributions founda prohibitive drawback since the integrals in Appendixes A
in Sec. lll. The trial function was also chosen to make Egsand C, and hence the free energy, can be determined to high
(12—(14) almost completely integrable in terms of elemen-precision over the full range of volume fractions<@ <1.
tary functions. The resulting expressions are presented in These observations may help clarify the slow conver-
Appendix A. gence of the iterative solution in Sec. Ill. For the trial func-
The most computationally intensive term in the free en-tion, one value o parametrizes a large set of distributions
ergy is Eq.(17), the two-dimensional integral fdf. Here we  that differ only in their smalld behavior and whose free
make an analytic approximation for the keril[see Eq. energies are within ordef; of each other. In other words,
(18)] which, in combination with the trial function, simplifies the free energy landscape {R,6,} has a narrow valley
Eqg. (17) considerably. In the domain9¢’'<6<=/2, we whose floor has a very shallow slope. The same is apparently
approximate true for the exact solution. The relatively rapid convergence

1—a sin(6,)=g,, 0,<0</2,
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of Fy; in Sec. lll finds the valley. The slow convergence of 105 ' ' T L A S
the distribution is due to the shallow slope within the valley. AN
If values for{R, 6,} are desired foo >v{;5%, we can take FN
advantage of the analytic form for the free energy in terms of . | N "
the trial function parameters. We need the valueRofhat - N

satisfies(note the change of independent variaples g

J 050 | N
SR (@R, 65)=0. (42) : N

______________________

From Eq.(41) we see that the derivative is proportional to ozs L ) . ) ) : . .
0, . Using the expressions in Appendixes A and C we could 0 02 04 06 08 1 1.2 1.4 1.6
calculate the derivative to leading orderdn, divide outé, , 0

and find the root using standard methods. The full calcula- o .
tion would be too Iongg to attempt here. Instead, we take FIG. 3. Nematic distribution function at=0.365 and® =3,

advantage of the following observation. In the range of voI-CaICUIateOI using the. iterative scheme of Sec. (), th? four-

ume fractions where we can determifie and R indepen- parameter trial functiort---), and the (3+1)-parameter trial func-

dently, the minimum off,,; coincides approximately with tion ().

the minimum ¢_R¥1-R)—c,(1+R)=0,
J 1 4msyl 48
_FO(a1R1§102):01 (43) —__ — TS1 _
IR C+T58 & a * 2°

wherel’, is the contribution tdl due to the leading-order The quartic polynomial irR can be solved exactly. It has
term in the Taylor series iV [setc=0 in Eq.(40); see the o real roots, but only one corresponds to the minimum of
Appendixe$.

We therefore propose the following algorithm for the in-

dependent determination Bfand 6 . (i) Given values fop 1 b2 1 [3 1-8c,/c_

andv, fix R=1 and minimizeF, with respect to the three R=2+5 3 \/ZJr gz Pu (49
parameter§«,{, 6,}. From Eq.(41) we expect that the pa- .

rameters and the free energy found in this way will have an 1 5c pl/3

error of orderd,. (ii) Solve Eq.(43) for R using the values by=-+ Wf*‘ i, (50)
for {a,{,6,} found in step(i). Then #;=exp(—{+1/2R?). 4 3b; Cc-

Although this only provides approximate values frand

6,, it has a significant advantage. St@p can be donana- et PP \/ 2 2 _ 446
lytically. Writing I'p=a(4ms;Al)?l (see Appendix ¢ Eq. b, 2 |erTC ComCm 7l (1)
(43 is

This is our prescription foR in terms of{«,{, 65}. We will
9 ) 9s, , dl refer to this as the (3 1)-parameter solution to distinguish it
0=—plo(a,R,{, ;) =a(4mAl) (ZSlﬁl +sionl) from the four-parameter solution, in which we minimizg,
(44) with respect td{ ¢, R, 6, 6,}.

o {+UR? C. Results

J
“RS@RL0) =278 —=7—(1-R)%, (45 In this section we present representative results, obtained
for ®=3. Figure 3 shows a comparison of the nematic dis-
tribution function derived in Sec. Ill to the results of the
(1-R?) four-parameter and (81)-parameter calculations, all at
=0.365. We see good qualitative agreement between all
three. In particular, the linear approach to 1 and the plateau
(46) at small @ are well represented.

Figure 4 shows the trial function parameters as a function
of volume fraction in the nematic phase, calculated using the
(3+1)-parameter solution. The most surprising feature is

f=gltr—atacodd,)] the enormous range @, values, 103—101%°, This is the
) source of the numerical difficulties discussed above.
L9 (7 sSin26) 47 It is instructive to compare the results of the
a(l—gy?2\2 72 2 ' (3+1)-parameter solution to the four-parameter solution
over the limited range of volume fractions where the latter
Substituting Eqs(45)—(47) into Eg. (44) and eliminating can be accurately determined. #=3, the minimum vol-
common terms gives ume fraction for which a nematic phase can be found is

P —(+1/2R?
R (R &0 = R

efg+l/2R2
+T(1—R)2f,
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- In( 91)

N1 1T T T Tt F T T
| S T I S Y S A U I O |

1072 | 1 1 1 1 I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
\"

0.4 0.5 0.6 0.7

o
o

FIG. 4. Four trial function parameters versus solute volume F!G- 6. Mean cylinder length versus solute volume fraction at

fraction at®=3, calculated using the (81)-parameter solution. ®=3, (_:alculated u_5ing th_e (481_)-parameter solutio(\—)_ and the
approximate solution derived in Sec. v--). Note the isotropic-

nematic crossover.
Umin=0.352 and the upper bound on the four-parameter so-

lution due to numerical limitations is{;5*=0.389. Within Figures 6 and 7 show further results for the
this range the free energies differ by less than 1%. Figuré3+ 1)-parameter solution. The value of the isotropic-
5(a) compares the values of the trial function parameters nhematic crossover is.=0.358, within 0.01% of the value
6,, and R. Agreement is typically within a few percent, found in Sec. Ill. Figure 6 shows the_ mean cylinder length
although theR values differ by as much as 11%. Figur@p  (!)=Al((o)—1) versus volume fraction. At the length
compares the values @ . Sinced;~exp(1/R?) at fixed;,  increases abruptly from 3o 11.%, in agreement with the
we find much larger differences in the valuesgf It should expectation that onen;atlc_)nal ordering decreases the steric
be noted that the #; values found using the hlndran_ce to _pqumerlzatlor(Refs. [13] and [25]. found
(3+1)-parameter solution are still orders of magnitude mor gualitatively similar results The mean length increases

. : Saster than exponentially with increasing volume fraction and
accurate than those found using the arbitrary chéieel. diverges ab = 1. Figure 7 shows the free energy versus sol-

ute volume fractionF; asymptotically approaches 0 at

=1 because the number density of spherocylinders
TF ~v/{o) approaches 0. The inset of Fig. 7 compares the free
energy results of the (81)-parameter trial function to the
0.8 - results of the iterative scheme after 1000, 3000, and 10 000
0 iterations. It is clear that the iterative scheme is converging
0.6 - 2 g to the 3+1 values. After 3000 iterations the difference is
less than 2% fov <0.55. These observations give us confi-
0.4 | dence in the accuracy of the {3L)-parameter solution.
0.2 - V. APPROXIMATE RESULTS FOR V—1
o . We can use the trial function results to motivate a useful
0.35 0.36 0.37 0.38 0.39 simplification of the free energyll) at high volume frac-
v v T v T T T v T
0
T T T
107 1 i -0.01 -
10° 8
- ] k= -0.02 .
107 + . S
[} 9 B ] o
;107 | - -0.03 1
-1 B :
10" i ] -0.04 R .
10-13 L 3 0.5 0.35 0.6 0.65 0.7
as | (b) i -0.05 L
10" ] 1 1 ] 0.6 0.8 1
0.35 0.36 0.37 0.38 0.39 \

v .
FIG. 7. Free energy versus solute volume fractiod®at3 cal-

FIG. 5. Trial function parameters versus solute volume fractionculated using the (3 1)-parameter solution. Isotropic-nematic
at & =3, calculated using the four-parameter solutien), the (3 crossover ab.=0.358. Inset: comparison in the nematic phase to
+1)-parameter solution---), and the three-parameter solution the results of the iterative scheme aftef 10 ), 3x 10° (---), and
found by settingR=1 (---). 10* (—--°) iterations.
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tions. As mentioned above, the mean lengthgrows with- ~ We define the reduced chemical potengidl=B8u and the

out bound a®— 1. We also find thaf'/(a%(1)) —0. Refer-  reduced pressung* = 8pV;, whereV,=4ra>3 is the vol-

ring to the definition of" in Eq. (8), this implies that the rods ume of a monomer.

are nearly parallel. These two conditions allow us to simplify There are two ways of defining an order parameter for
the coefficients in the configuration integidtgs. (6) and  polydisperse systems. The number-averaged order parameter
(7)] to B—6v/n andC—4(v/n)?, where we have used the is

fact that wa®(l)—v/n. We also find empirically that the

orientational entropy per rod, Ing&,)+V in Eq. (11), tends _ -
toward zero with increasing volume fraction. These observa- Sh= Uzl d€) s,(Q)P5[cog6)]
tions suggest the approximate free energy
72 . 1
BFtot[TvVaM-(D;n] =477'Slf0 de sin( 0)mP2[CO$ 0)], (56)
V
3 5 and the mass-averaged order parameter is
(@ 1+In( na )+3( ° )+4 ° ) ]
=n — — o0
1- 1- 31— ' 1
’ ’ ’ Sn=r > o J d0) s,(Q)P,[cog 0)]
(52) (o) &=1
which we expect to be accurate at high volume fractions. _Ams, J'”’Z . a(0)
(We will consistently use a tilde to distinguish the approxi- - {o) Jo dé sin(6) [1-9(8)]? Palcog0)],

mate results derived in this sectipiNote thatF,, depends (57)
on the distribution only through the spherocylinder number
densityn=m/(o). where P,(x)=(3x?—1)/2 is the second-order Legendre

'Equation(52) illustrates the competing terms that deter- polynomial. Birefringence studies meas8g. Substitution
mine n. The end cap energp and the excluded volume of the trial function gives

terms favor a low number density and therefore a high
mean polymerization. The only term that favors a higrs TSy fe 8.} 4 1 B 3\ . g1+ 1 Y
the entropy of mixing, which entef,,; asn{In(na®)—1}. Sh=y | (B2m O | g~ 5 [SiN200)+ 5 Sin20) 1,
We can find approximate closed form expressiong=gr (58
and n by minimizing Eq.(52) with respect ton. Solving
dF/dn=0 gives tan 6,)
tan(6,)/ |

~ (1-v v 4/ v \? (59
”:(?)exp[‘q’*(l—u)‘ﬁ(l—u)

4w (13
Sm_m ﬁ_i cog 64)+cog6,)+In

(53

B. Results

We again pick the representative valle=3. Figure &a)
Shows the reduced pressure versus solute volume fraction.
The (3+1)-parameter solution is accurate over the whole
range. We see a large drop in the pressure at the crossover to
the nematic phase.=0.358. The iterative solution after
10 000 iterations differs from the (81)-parameter solution
by less than 2% fop <0.55. The approximate free energy

VI. THERMODYNAMIC QUANTITIES derived in Sec. V gives an estimate for the pressure that is
A. Definitions accurate to about 25% at=0.5 and better than 1% far
o . =0.7. Note that the pressure decreases monotonically to zero

Once the distribution function has been found, we camyg the volume fraction increases, implying that the entire

calculate all the thermodynamic quantities of interest. In parqematic phase is thermodynamically unstable. This behavior

for ®=3 and® =10 (see Sec. IY. The plot of mean cylin-
der length in Fig. 6 is typical. The error is about 20%wat
=0.5 and less than 1% far=0.7. The closed expressions
seem to be exact as— 1.

ticular, the pressure is will be discussed in the next subsection. Figutb)&hows
P S, and S, in the nematic phase. The mass-averaged order
Bp=— ﬁ_VIBFtot[T!ViM ,9(0)] parameter goes rapidly to 1 with increasing volume fraction.

Surprisingly, the number-averaged order parameter remains
n B( n )2 ZC( n small and decreases toward 0. This is another consequence of

3
+ — ], (54) the increasing sharpness @f
1-v 3\11-v

1012

and the monomer chemical potential is C. Singularity at v=1

The free energy1l) has a singularity abt =1, as do all
scaled particle treatments. A more accurate free energy
would presumably diverge at or below the close-packed vol-

(55) ume fraction, but this should not make a qualitative differ-

d 1
Bu= 57 BFel T.V.M.9(0)]= 17 (BFact BPV).
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0.6

0.4

0.2

0 1 1 1 1 1
035> 04 045 05 055 0.6
v
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(b)

FIG. 8. (@) Reduced pressure anth) mass-averaged and
number-averaged order parameters versus solute volume fraction
& =3, calculated using the (B81)-parameter solutiof—), the it-
erative scheme after 1@terations(+), and the approximate solution
of Sec. V(---).

ence in the resulting phase diagram. In this paper we assu
that the solute volume fraction can increasetel.

The two conditions for phase coexistence are equality 05

pressures p(1)=p(N) and chemical potentialsw(l)
= u(N). Phase coexistence will therefore appear as an inte
section on a plot of chemical potential versus pressure. Fi
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0.1

0.2 0.3 0.4

p*

0.5 0.6 0.7 0.8

FIG. 9. Reduced chemical potential versus pressur® at3.
The solid line is calculated away from the singularityvat 1. The
dotted line is the contribution from the perfect nematic phase at
=1. The circle label$-N coexistence at.* = p* =0.245.

vl g 8/3
AP~ el 1) 65
which diverges av =1. A similar calculation gives
v—14a 8/3 _ oy 62

at
These expressions depend on the box size and are only sig-

nificant for 1—v=<(a/L)*3, but the plot of chemical poten-
tial versus pressure i8u=BpV; independenof the box
size. We show in Appendix D that this expression is valid for
any sufficiently steep increase in the pressure. It does not

rTaeepend on the specific form of the free energy.

The branchBu= BpV; appears as the dotted line in Fig.
We see that the isotropic phase coexists with a perfect
nematic phase gt* =p* =0.245. The volume fraction of

the isotropic phase is(1)=0.199. We have repeated this

ure 9 shows the reduced chemical potential versus the r%:_alculatlon for a range of end cap energibs Figure 10

Shows the resulting phase diagram. As expected, an increase

duced pressure 'foﬁ>=3. _The solid I.|ne, ca_lculated. fos in ® promotes the assembly of longer rods and favors the
<1, shows no intersection. The singularity provides the -

e . nematic phase.
missing branch of the nematic pressure curve. We therefore

expect to find coexistence between an isotropic phase with

volume fraction v(l)<v. and a nematic phase with
v(N)=1.
To find the contribution to the pressure due to the singu

larity atv =1, we make a careful treatment of the thermody-

namic limits V—o~ and M—o. Consider the limiting ex-
pression for the pressuf@4) asv— 1. From the results of
Sec. V we have

v—l 8/3

Bp ~ nm- (60)

We see thap—0 asv—1 is a consequence of the fact that
n—0 faster than (+v) 3 diverges. For an infinite box,
there is no limit to this trend. However, in a cubic box of side
L, the number of rods cannot decrease beld\W(wa?), so
n=1/ma’L. Therefore,

VII. RESTRICTED ORIENTATION APPROXIMATION

The problem of self-assembling rods has often been sim-
plified by restricting the rod orientations to three mutually
orthogonal axesgoften called theXY Z mode) [26,27. One
can convert our free energypec. I) to an XY Z model by
discretizing the angular integrations

4
deA(g(Q))H% > Adg)
i={xx,xy,xz}
A
= ?{ZA(QL) +4A(g)} (63)
41 2 g 9. gf
r—a ?SlA') [16(1—9>2(1—gi>2+8(1—gi>4 '

(64)
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model and found a nematic-nematic transition, in addition to
the expected isotropic-nematic transition, over a limited
range ofd values[28]. Hentschke and Herzfeld repeated the
calculation using a continuum of orientations and found no
nematic-nematic transitiofi9].

VIIl. CONCLUSIONS

In this paper we clarify the numerical difficulties encoun-
tered in solving a quantitative model of self-assembling
- . spherocylinders, including the coupling between assembly
Y ' : ' : ' and nematic order. The main quantity of interest is the equi-

0 01 v 0.2 03 librium distribution of spherocylinder orientations and
lengths. We begin with a transformation of the distribution

FIG. 10. I-N phase diagram as a function of solute volume and derive a nonlinear integral equation suitable for use as an
fraction and end cap energy costdenotes the isotropic phase. iterative solution. Numerical iteration gives a monotonic de-
Dotted tie lines connect the isotropic phase with the coexistingcrease in the free energy and an incremental refinement of
nematic phase at=1. the distribution. In the isotropic phase the distribution con-

verges rapidly. In the nematic phase the number of iterations
where the sum over the six directions has been simplifiedequired for convergence increases exponentially with in-
using the expected axial symmetry of the solution. The valcreasing concentration, so an accurate distribution can only
uesg, andg, are taken parallel and perpendicular to thepe found over a limited concentration range.

nematic director, respectively. To solve we spedifyandv In the accessible range of nematic concentrations, we find
and use a downhill simplex routine to minimifg,, with  that the distribution isiot approximately Gaussian. Rather, it
respect tay, andg, . exhibits approximately linear behavior at small angles before

Figure 11 shows a comparison of the pressures for theeaching a plateau at a cutoff. The cutoff decreases ex-
XY Z model and the (3 1)-parameter trial function ab ponentially with increasing volume fraction. This is the pri-
=10. The positions of the isotropic phase boundaries commary source of numerical difficulties since any discretization
pare well, but we otherwise see qualitative disagreementf the distribution must either resolve this cutoff or treat it in
The restricted orientation model underestimates the pressutstosed form. In calculations not presented here, we have
by a factor of 4. Also note the second phase transition fronverified that the linear regime and the smallnes$ore not
a dilute nematic phase to a dense nematic phase predicted byiique to the scaled particle expression for the effects of
the XY Z model. The nematic-nematic transition occurs forexcluded volumdgsee Eq.(5)]. Onsager’s second virial ap-
all ®>8.5. For values ofb <8.5, there is improved agree- proximation[7] and the expression used by Hentschke and
ment between thXY Zand (3+ 1)-parameter results. There Herzfeld[19] yield qualitatively similar results. These obser-
is a single phase transition from an isotropic phase to theations provide a counterpoint to the common assumption
nematic phase at(N)=1. The pressure is still underesti- that the nematic orientation distribution in self-assembling
mated by about 30% ab=3. systems is Gaussian.

Qualitatively similar behavior was found by Herzfeld and  To extend the results to the full range of nematic concen-
co-workers in their theoretical studies of amphiphile self-trations, we introduce a trial distribution function that repro-
assembly. Herzfeld and Taylor used a restricted orientatioduces the qualitative features of the iterative solution. This

allows us to solve most of the desired integrals in closed
form and to treat some aspects of the solution analytically.

0.006 T T T T T . . .
P The results of the trial function calculation suggest an ap-
0005 L i | ] proximate free energy for the nematic phase, valid for high
{1 341 parameter volume fractions. From this we derive closed expressions for
0.004 | - the free energy and the mean polymerization that are accu-
R rate to 1% forv>0.7 and seem to bexactin the limit v
P™  0.003 |- 1 1.
0.002 | | We find that the mean aggregation number in the nematic
xvz phase diverges at 100% solute volume fractidthe diver-
0.001 o T gence is above close packing due to our use of scaled particle
theory) As a result, the spherocylinder number density de-
0 : : SR s ' creases to 0, as does the pressure. The only thermodynami-
] 0.1 0.2 0.3 0.4 0.5 0.6

cally stable nematic phase has infinite mean polymerization
and volume fraction» =1, indicating the formation of dense
FIG. 11. Reduced pressure versus solute volume fractish at Nematic crystallites in an otherwise isotropic solution. This
=10. Comparison of the results of the {3)-parameter(con-  agrees with the previous approximate results of OHijK]
tinuum) solution with the XY Z solution is shown. Dotted lines and van der Schoot and Catgh8], who conclude that the
show the single-phase values. Solid lines show phase coexistendgbsence of a dilute nematic phase is due to the perfect rigid-
Note that there are two nematic phases in XheZ solution. ity of the rods. Flexibility will be relevant whenever the
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mean filament length exceeds the persistence length. Aprhe integralV in Eq. (14) is
proximate theories suggest that flexibility will smooth out

the small¥ behavior of the orientation distribution and sta- doln(do) A

bilize the nematic phase at lower volume fractidtg,29. \P=47Tsl[ﬁ[l—cos( 0.)]+—

Another mitigating factor is the possibility of soft repulsions (1=9o) “«

between the particles, which increase the relative cost of the g,In(g,)

dense phase and narrow the coexistence reg@ipn (1=g,)? cog 02)}, (A3)

The experimental systems that come closest in spirit to
the present work are solutions of cylindrical micellds, _
sickle-cell hemoglobin3,2], actin filamentg4], and micro- | fezdﬁ In[1—«a sin(6)] (Ad)
tubules [5]. All exhibit self-assembly and an isotropic- A e, sin( 6) ;
aligned phase transition as the solute concentration is in-

creased. However, in all cases the width of the phasghere the integral , cannot be solved in terms of elemen-

coexistence region is much narrower than predicted herggry functions. We calculate, by discretizing aN, points.
Actin filaments and surfactant micelles have significant elecThen

trostatic repulsion and are typically much longer than their
persistence length. Microtubules and sickle cell hemoglobin Ny

f_ilaments are less flexible, but soft repulsions are still be- |A=A02 yi In[l—_a sin( 01')]’ (A5)
lieved to be relevant3O]. i= sin( ;)
ACKNOWLEDGMENTS where 6;=0,+(j—1)A0, A0=(0,—61)/(Ny—1), vy

=YN,= 1/2, andyjﬂ,Ngz 1. We useN,=32, for which Eq.
(A5) may have an error of 1%. In practiég makes a rela-
tively small contribution td,;.

This work was supported by NIH Grant No. HL36546 and
NRSA Grant No. GM18932.

APPENDIX A: INTEGRALS S, (o), AND W
APPENDIX B: APPROXIMATION FOR W

Substituting the trial functiof39) into Egs.(12) and(13)

gives We seek an approximation for the kerh€ldefined in Eq.

(18):
/2 -1
S$1= 4’7Tj de sin(a) _—} 1 2@
0 1-9(6) W(6,0')=5— | ~dalsiny), (B1)
1-cog6,) 6,—6, cog6,)\| !
:{47( 1_3( D, b= 61 1% 2)) . (A1)
Y @ 92 coq y)=cog f)cog 8’ ) +sin( 0)sin( 6’ )cog ¢). (B2)
(o) =4ms l1-cog6;) 1 N tan(6,/2)|  cog ;) Begin with the Taylor series fo(6,6') at small sing’) in
g 1 (1—g0)2 a2\ tan 0,12)] " (1—g,)?| the domain B< ' <6< «/2. We use trigonometric identities

(A2)  to rewrite Eq.(B2):

2 cog6')coq @)
tan( 9)

)+sin2(0’)< —cog(¢) |. (B3)

sin(y) =sin( 0) \/1—S|n(0’)( tarf(6)

Expanding the square root to second order in@&and  main. To illustrate the accuracy of the approximation, in the

integrating overg gives isotropic phase we find
ir2( o’ . 7 2 1.3_
W(6,6")=sin(6) 1+c—:'sirfzf0))[1—2 sin?(a)]), (S)=3-37 1070774 B9
(B4)

which is only 1.4% less than the exact value/4

wherec=1. This expression was compared to accurate data 0.785... .

for W usingMATHEMATICA. The relative error is only 2% at
small ', but this increases to 15% f&' nearm/2. APPENDIX C: INTEGRAL T
With the choicec=1.3, some accuracy is lost near the _
origin, but agreement is better than 7% over the whole do- Substituting the approximate kernaf into Eq.(17) gives
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1 1 02
19 ,=ho[1—cog el)][ — 0+ — cog a)] ., (C10
01
1 1
|2,l: - hOCl aZtar( 0) + ? 0
1 2 %2
+ Eln[tar( 0/2)1+ - cog 0)] 01, (C1)
1
=—[1 cog 01)]— cog ;)sirt(6;), (C12

1 - Sin(26,)
|g,1:hoh2§[1—005(91)]<5—92+ 5 )

FIG. 12. Domains of integration used in the calculatior’of

(C13
B w2 g(&) 1
F—23(4W31A')2f0 dﬁm 131= = 5hohscssin(26,), (C14)
c

’ ’ _ ’ h 2 0>

oS | Ko+ o), |2,2=§(§—02+M)[ Sin (e/2>—ﬁj ,
(C) " c15

where we have broken the kern¢€linto two pieces: ) _h2 | 1 1 sin(20)
Kol 6,6")=sir?(6)sin(6"), (I i s L R i O

(C16

K,(6,6")=sir(6")[1—2 sirf(6)]. (C3)

[
K, is due to the zeroth-order term in the Taylor series\of Where ho=00/(1-00)*, h2=9/(1-g2)% and {A(O)} 2
[see Eq.B4)] andK, is due to the second-order term. We =A(6,) —A(8,).
have split the kernel in this way to clarify the integrations.  The integrationl , , involves four pieces. Rewriting for
Figure 12 shows the division of the integral fbrinto six 6,<6<86,,

domains
1 1 17
3 i = . 2 - f
r=2a(4ms:a)?%, 3 {1+ g1 ,,] (4 La SO ar sin(6)
e gives
= dahafde’he’K 6,0, C5 o1 , 1
fi (6) j (67K ) (€9 |J2,2:?|13232_?|J325 3|332+ 2|ssv (C19
whereh=g/(1—g)2. The mtegralsl"J can all be solved in
terms of elementary functions with the exceptibn indi- | k:f dg —— 1 d 1 Ki(6,0)
cated below: s’s sink(6) sim(g) 1
_ (C19
1} ,=h3 Fi(0,6,), (C6)
. | 3= {sin(0) — cos 6,) 6} 2, (C20
s 5=h3 Fi(62,7/2), ()
1 sin(26)| 1 02 1% =E(.9 —0,)? (C21)
Fo(61,0,)= —005(01)(6— )——sin3(6) , s’ V2 U
2 2 3 P
1
(C9) Igszz{—cos(ez)ln[tar(0/2)]+In[sin(0)]}2?, (C22)
1 2
F1(61,0,)= 5 cog 6;)[ 2+Sin(6;)]— 3 sin( 9) |2252={'92|n[tar( 9/2)]}Zi_|c, (C23
1 2 02 ) 0 Ny -
+—sin3(0)+—sin5(0)J , (Cg) | :f 2d0 i =A6 - J c2
3 15 o o= ), Vs 202 Vs €
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wherel ¢ is the second integral that must be calculated nuvs— e<v<wvs. [In Sec. VIC,vs=1 and e~ (a/L)¥3<1]

merically [see Eqg.(A5) for notatior]. The remaining inte-
grals are

Iész[—(01—%Mﬂ)(%ln[tarw/ahcos{a))
3 1 b2 1
—Esm(0)+§sm3(0)+0cos{0) +t5le, (€29
21
1 sin(26,) 1
| T a2
b2
—tarw)+sin2(6)—02J : (C26)
2
e o500 gy 20+ gy 25|
|3232— _005(01) m-ﬁ-Zﬁ +Sin(—0)+25|r(6) 01,
(C27)

I 232: {cod #)In[tan( 6/2)]—In[sin( #) ]+ sir?( §)

+2 cog 6;)cog a)}g;. (C29

APPENDIX D: SINGULAR BRANCH IN THE P-p PLANE

Consider a Helmholtz free energy of the form
Fiod T.V.M,s,(Q)]=F,t+Fs, whereF contains all nonsin-
gular terms and-¢ diverges atvg and is only appreciably
different from zero in the infinitesimal neighborhood

Since the free energy is an extensive quantity, we can write
FJT.V,M,s, (Q)]=VI[T,v,5,(Q)], wherev=MV,/V is
the volume fraction. The pressure and chemical potential are

L T (DY)
p(v - (9V _pns(v v ’

)= PFrot_ )+ V, f! (D2)
p(v)= oM = Undv 1t

wheref’=9df/dv and the subscript ns denotes the nonsingu-
lar contributions. We only need to show tHatv f’. Recall-

ing thatF is negligible forv <vs— € and assuming thdt’ is
montonically increasing, we find the bound

f(v)=f dv'f'(v")<f'(v)(v—vste). (DI

In the domainv;— e<v <uv, this implies
£ o) D4
(v)/v_vs+€ (v), (D4)

where we have used the fact thak 1. EquationgD1) and
(D2) thus give

\
M_ﬂns(vs)zv_s[p_pns(vs)]- (D5)

In Sec. VC,vs=1 and p,{vs)=pundvs)=0, giving u
=V;p, the desired result.
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