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Distribution functions for reversibly self-assembling spherocylinders

Eric M. Kramer* and Judith Herzfeld
Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110

~Received 3 April 1998!

We consider an equilibrium solution of hard spheres undergoing reversible self-assembly into spherocylin-
ders. Our main interest is the distribution of cylinder orientations and lengths in the nematic phase. Over a
limited range of concentrations, we find accurate numerical results for the distribution using an iterative
equation. Based on trends in this regime, a trial distribution function is introduced that allows an efficient
calculation of accurate thermodynamic data over the entire concentration range. In agreement with previous
authors, we find a first-order transition from a dilute, weakly polymerized, isotropic phase to a concentrated,
highly polymerized, nematic phase.@S1063-651X~98!09911-5#

PACS number~s!: 61.30.2v, 64.70.Md, 87.15.2v
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I. INTRODUCTION

The theory of self-assembling filaments has applicati
to both biology and physics@1#. In ordinary cells, about 10%
of the protein is capable of reversible self-assembly into fi
ments. These proteins, primarily responsible for the cy
skeleton, include actin and tubulin. There are also exam
from disease pathology in which normally globular prote
assemble into filaments. The best known disease of this
is sickle-cell anemia@2#. An improved understanding o
these cellular systems has been sought throughin vitro ex-
periments on solutions containing the minimum required
polymerization~see, e.g.,@3–5#!. Of equal interest are solu
tions of smaller amphiphilic molecules@6#. A variety of
polyaromatic molecules are known to spontaneously stac
form cylindrical aggregates and many surfactant syste
form cylindrical micelles. Both systems exhibit liquid cryst
phase behavior, typically an isotropic-nematic or isotrop
hexagonal phase transition.

An important feature common to systems of asymme
cally shaped particles is the presence of a first-order ph
transition from an isotropic phase at low concentrations t
nematic phase at high concentrations. The theory of
isotropic-nematic (I -N) phase transition in simple lyotropi
liquid crystals is well established. In a seminal paper, O
sager considered a monodisperse solution of hard, r
spherocylinders and rigorously demonstrated the existenc
an I -N transition in the long rod limit@7#. The theory has
subsequently been refined to include the effects of fin
length and polydispersity@8#, electrostatic repulsion@9#, and
flexibility @10# ~see Refs.@11# and @12# for reviews!.

The extension of these theories to a polydisperse mix
of rigid rods formed by reversible assembly is less advanc
In this case one needs to find the equilibrium distribution
rods as a function of both orientation and length. Althou
the law of mass action can be used to reduce the distribu
to a single function of azimuthal angle, the solution for th
function is qualitatively more difficult than in the monodi
perse case. Most previous research has proceeded by m
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a variety ofad hocassumptions. These include the use o
Gaussian orientation distribution@13#, the restriction of rod
orientations to three mutually orthogonal axes@14,15#, or the
assumption that the rods are monodisperse@16,17#.

To our knowledge, there have only been two previo
attempts to derive an accurate and self-consistent length
orientation distribution. van der Schoot and Cates@18# ex-
panded the distribution in Legendre polynomials and solv
for the coefficients in the vicinity of the isotropic-nemat
bifurcation point. This approach was necessarily limited
very weakly ordered phases~order parameter less than 0.03!.
Hentschke and Herzfeld@19# solved the nonlinear integra
equation for the distribution using a numerical iterati
scheme, but we will show that they lacked sufficient angu
resolution to find accurate results in the nematic phase.

The goal of this paper is to obtain the accurate equi
rium distribution function, free energy, and associated th
modynamic results for a solution of reversibly se
assembling spherocylinders. We employ a phenomenolog
description of rod assembly and a scaled particle treatmen
excluded volume effects@8#. ~Use of Onsager’s second viria
approximation instead of scaled particle theory gives l
accurate results, but does not change our qualitative con
sions.! We find that the nematic orientation distribution e
hibits approximatelylinear behavior at small angles, in con
trast to previous assumptions. We also provide accu
results for the free energy of the nematic phase over
entire concentration range. In agreement with previous
thors, we find a transition between an isotropic phase of s
rods at low volume fractions and a nematic phase of lo
rods at high volume fractions. The only thermodynamica
stable nematic phase is fully polymerized and has volu
fraction v51, corresponding to the length ‘‘explosion’’ re
ported by Odijk@17#.

The paper is organized as follows. In Sec. II we pres
the free energy of a polydisperse mixture of hard sphero
inders formed by the reversible, isodesmic, self-assembl
spheres. In Sec. III we derive an integral equation for the
distribution that minimizes the free energy. The integ
equation is solved iteratively, but convergence is very sl
over most of the nematic phase. In Sec. IV we presen
four-parameter trial function for the rod distribution that ca
tures the essential features of the iterative solution and
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PRE 58 5935DISTRIBUTION FUNCTIONS FOR REVERSIBLY SELF- . . .
lows us to minimize the free energy much more rapidly.
Sec. V we discuss some qualitative features of the solutio
high volume fractions and derive accurate closed express
for the free energy and mean polymerization. In Sec. VI
calculate the pressure and other thermodynamic quant
for the free energies of Secs. III–V. In Sec. VII we compa
our results to an approximate solution obtained by restric
the rods to lie on three mutually orthogonal axes~the so-
calledXYZ model!. The paper is concluded in Sec. VIII.

II. MODEL

A. Ideal self-assembly

We begin by considering an ideal gas ofM monomers in
a volumeV and at temperatureT, capable of reversible self
assembly into linear aggregates. For simplicity we assu
that isolated monomers are hard spheres of radiusa and that
linear aggregates are hard spherocylinders, composed
cylinder of radiusa and lengthl with hemispherical end
caps. Assuming that volume is conserved when a mono
joins an aggregate, the length of the cylinder isl s5(s
21)D l , where D l 54a/3 and the aggregation numbers
5$1,2,3, . . .% is the number of constituent monomers.

The population of particles is characterized by the dis
butionss(V)dV, the mole fraction of aggregates with inde
s and orientationV in the differential solid angledV
5sin(u)dudf. It satisfies the normalization(s*dVss51.
We use the angular bracket to denote the mean value
quantity over this distribution:

^A&5 (
s51

` E dV ss~V!As~V!. ~1!

The mean aggregation number is^s& and the total number o
aggregates isN5M /^s&. The mole fraction of unpolymer
ized monomer is 4ps1 .

In this section we neglect the nonideality due to hard-c
repulsions. The Helmholtz free energy is then the sum
three terms

F ideal5Fagg1F01lS (
s
EdVss21D . ~2!

The first term is a phenomenological description of rod
sembly. We assume that assembly is isodesmic, i.e., tha
free energy decreases by a fixed amountF0 for each
monomer-monomer contact in an aggregate

bF@T,V,M ,F0 ;ss~V!#agg

V
52F0~m2n!

52F0mS 12
1

^s& D , ~3!

whereb51/kBT, m5M /V is the number density of mono
mers ~including those in aggregates!, and n5N/V is the
number density of aggregates. A positiveF0 favors aggre-
gation. The second term in Eq.~2! includes the classica
contributions due to translation and the entropy of mixing
at
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bF@T,V,M ;ss~V!#0

V

5
m

^s& H lnS mL1
3

^s& D 211(
s

E dVssln~4pss!J , ~4!

where L15(bh2/2pm)1/2 is the thermal wavelength of a
monomer@20#. The third term uses the Lagrange multiplierl
to enforce the normalization of the distribution. Minimiza
tion of the free energy in Eq.~2! gives the ideal, isotropic
distribution ss5exp(2s/^s&)/4p^s& for ^s&@1, where the
mean polymerization iŝs&5(mL1

3/4p)1/2exp(F/2). This is
a classical result consistent with the law of mass action@21#.

B. Nonideal contribution to F

We assume the particles interact only through their ha
core excluded volume, so the nonideal contribution to
free energy comes exclusively from the configuration in
gral. There are no known exact results for the configurat
integral of a polydisperse solution ofN spherocylinders. We
use the expression derived by Cotter and Wacker@8# using
scaled particle theory~SPT! ~note that the independent var
able isN, not M !

bF@T,V,N,ss~V!#config

V

5nH 2 ln~12v !1
B

2 S n

12v D1
C

3 S n

12v D 2J ,

~5!

B58pa316pa2^ l &14G, ~6!

C54~2pa31pa2^ l &!~pa31pa2^ l &1G!, ~7!

G5a (
s,s8

E dV dV8l sssl s8ss8usin~g!u, ~8!

where ^ l &5D l (^s&21) is the mean cylinder length,v
5n(4pa3/3)^s& is the particle volume fraction, andg is the
opening angle between orientationsV andV8. In polar co-
ordinates

cos~g!5cos~u!cos~u8!1sin~u!sin~u8!cos~f2f8!.
~9!

Equation ~5! has the following desirable properties.~i!
For l s5 l @a, it matches Onsager’s second virial approxim
tion for monodisperse rods@7#. ~ii ! For l s50, it matches the
well-known SPT and Perkus-Yevick results for hard sphe
@22#. ~iii ! The second virial coefficient is exact.~iv! It com-
pares well with the recent simulation results of Bolhuis a
Frenkel for monodisperse rigid spherocylinders with asp
ratios 7< l /a<100 @23#. Figure 1 shows a comparison o
their isotropic-nematic coexistence concentrations with
second virial theory of Onsager and the scaled particle the
of Cotter and Wacker. There are no free parameters. On
er’s second virial approximation gives values that are
large by 20% atl /a550 and does significantly worse fo
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5936 PRE 58ERIC M. KRAMER AND JUDITH HERZFELD
smaller aspect ratios. The values obtained using Eq.~5! agree
with the simulation results to 5% forl /a.20 and 10% for
10, l /a,20.

In the case of reversible assembly, Eq.~5! is unchanged.
However, the independent variable is the number of mo
mersM , rather than the number of spherocylindersN, so we
need the relationsn5m/^s& and v5(4pa3/3)m. The total
free energy is then

F tot5F01Fconfig1Fagg1lS (
s

E dVss21D . ~10!

The remainder of this paper is concerned with finding
distribution ss(V) that minimizesF tot and calculating the
resulting thermodynamic quantities.

Taking the functional derivativedF tot /dss(V)50 confirms
that the equilibrium distribution has the functional for
ss(V)5s1g(V)s21, consistent with the law of mass actio
The length and orientation distribution is fully specified
the functiong(V). Strictly speaking,g is the dimer orienta-
tion distribution function, but for brevity we will refer to it a
the distribution function since we seldom need to distingu
it from ss . Completing the sums overs, the free energy
becomes

bF tot

V
52mF01nH F1 ln~4ps1!1C211 lnS na3

12v D
1

B

2 S n

12v D1
C

3 S n

12v D 2J , ~11!

whereF5F013 ln(L1 /a) and the four integrals to be ca
culated are

s15S E dV
1

12g~V! D
21

, ~12!

^s&5s1E dV
1

@12g~V!#2 , ~13!

C5s1E dV
g~V!ln@g~V!#

@12g~V!#2 , ~14!

FIG. 1. Solute volume fractions at isotropic-nematic coexiste
as a function of spherocylinder aspect ratio.I andN denote isotro-
pic and nematic phases. Circles are simulation results of Bol
and Frenkel@23#. Solid lines are calculated using Eq.~5!. Dashed
lines are calculated using Onsager’s second virial approximatio
-

e

h

G5a~s1D l !2E dV
g~V!

@12g~V!#2

3E dV8
g~V8!

@12g~V8!#2 usin~g!u. ~15!

The Lagrange multiplier has been eliminated in favor of t
normalization~12!. The integrals may be simplified using th
expected axial symmetry of the distributiong(V)5g(u)
5g(p2u), so that

E dV A„g~V!…54pE
0

p/2

du sin~u!A„g~u!… ~16!

and

G5a~4ps1D l !2E
0

p/2

du sin~u!
g~u!

@12g~u!#2

3E
0

p/2

du8sin~u8!
g~u8!

@12g~u8!#2 W~u,u8!, ~17!

W~u,u8![
1

2p E
0

2p

dfusin~g!u. ~18!

The first term in Eq.~11!, 2mF0 , changes only the zero
of the chemical potential and has no effect on the distri
tion. For convenience we absorb this into the definition
F tot . The parameterF is twice the free energy cost pe
spherocylinder end cap, i.e., the cost to break a filament.
distribution depends only on the end cap energyF and the
particle volume fractionv. It must be determined by mini
mizing F tot .

III. NUMERICAL SOLUTION
FOR THE DISTRIBUTION FUNCTION

A. Numerical difficulties

In Ref. @19#, Hentschke and Herzfeld derived an iterati
equation for the distribution from the functional derivativ
dF tot /dg50. The integrals in Eqs.~12!–~15! were solved by
discretizing in the variablex5cos(u) and performing Gauss
Legendre integration@24#. They found good convergence i
the thermodynamic variables and located the expec
isotropic-nematic transition. However, in a similar calcu
tion we found that the results depended sensitively on
angular resolutione of the discretization. The apparent cau
is that the distribution function exhibits approximately line
behaviorg'12au over a rangeu1,u,0.1, before reach-
ing a plateau at smallu. The cutoffu1 decreases rapidly with
increasing concentration and may be many orders of ma
tude smaller than 0.1. Since the integrals depend
1/(12g), special care must be taken near the origin. F
example, ife@u1 a calculation of̂ s& finds

^s&5~4ps1!E
0

p/2

du sin~u!
1

@12g~u!#2

;E
e
du

1

u
; ln~1/e! ~19!

e

is

.
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rather than; ln(1/u1). A numerical solution using a discret
zation ofg must have a resolution of orderu1 near the ori-
gin, while the resolution in Ref.@19# wase'0.02.

A related problem is that a numerical solution withP
digits of precision ing only has P2 log10(1/u1) digits of
precision in 1/(12g). Even P532 turns out to be inad
equate for most cases of interest. In Secs. III B and III C
present an iterative scheme and a discretization that av
these difficulties.

B. Iterative equation

The numerical precision lost when working withg is pre-
served if we instead work with the fieldh[ ln@g/(12g)#. The
inverse transformation isg5eh/(11eh). Note that while
0,g,1, h is not bounded. This is an additional advanta
since we will use an iterative procedure. The integrals in E
~12!–~15! become

s15S E dV ~11eh! D 21

, ~20!

^s&5s1E dV ~11eh!2, ~21!

C5s1E dV ~eh1e2h!@h2 ln~11eh!#, ~22!

G5a~s1D l !2E dV ~eh1e2h!E dV8~eh81e2h8!usin~g!u,

~23!

where we have introduced the shorthand notationh5h~V!
andh85h(V8). Taking a functional derivative of Eq.~11!
with respect toh gives

052
1

^s&

d^s&
dh

F̂2s1ehC1s1@h2 ln~11eh!#~eh12e2h!

1
1

2

dB

dh S n

12v D1
1

3

dC

dh S n

12v D 2

, ~24!

where

F̂5F1 ln~4ps1!1C1 lnS na3

12v D1B
n

12v
1CS n

12v D 2

,

~25!

dB

dh
56pa2D l

d^s&
dh

14
dG

dh
, ~26!

dC

dh
5~3pa312pa2^ l &1G!4pa2D l

d^s&
dh

14~2pa31pa2^ l &!
dG

dh
, ~27!

d^s&
dh

52s1eh^s&12s1~eh1e2h!, ~28!
e
ds

e
s.

dG

dh
52~s1D l !2~eh12e2h!E dV8~eh81e2h8!usin~g!u.

~29!

Equation~24! is a nonlinear integral equation forh. It cannot
be solved in closed form, but it may be used as the basis
an iterative solution

h5 ln~11eh!1
1

s1~eh12e2h! F 1

^s&

d^s&
dh

F̂1s1ehC

2
1

2

dB

dh S n

12v D2
1

3

dC

dh S n

12v D 2G , ~30!

where thej th iterateh ( j ) is substituted into the right-han
side to generateh ( j 11) on the left. Many different iterative
equations can be derived from Eq.~24!. We find empirically
that Eq.~30! gives a monotonic decrease in the free ene
with each iteration and has no spurious singular behavio

C. Discretization

To solve the problem of resolution at smallu, discussed in
Sec. III A, we convert to the logarithmic variableu5
2 ln(2u/p) and make a uniform discretization onu. The in-
verse transformation isu5(p/2)exp(2u). The integral over
an axially symmetric functionA becomes

E
0

p/2

du sin~u!A~u!5E
0

`

du
p

2
e2usinS p

2
e2uDA~u!.

~31!

This transformation is only useful ifA(u) goes to a constan
A(u>umax)'A(umax) for some umax@1 @i.e., A(u<umin)
'A(umin) for 0,umin!1#. Then we can use the following
approximate result at the upper limit of integration:

E
umax

`

du
p

2
e2usinS p

2
e2uDA~u!'E

umax

`

duS p

2
e2uD 2

A~umax!

5
1

2 S p

2
e2umaxD 2

A~umax!.

~32!

The usual discretization onNu equally spaced points is

E
0

umax
du

p

2
e2usinS p

2
e2uDA~u!

5
p

2
Du(

j 51

Nu

xj8e
2ujsinS p

2
e2uj DA~uj !, ~33!

whereuj5( j 21)Du, Du5umax/(Nu21), x185xNu
8 51/2, and

xj Þ1,Nu
8 51. Combining these results gives

E
0

p/2

du sin~u!A~u!5Du(
j 51

Nu

xju jsin~u j !A~uj !, ~34!

where x151/2, xj Þ1,Nu
51, xNu

5(111/Du)/2, and u j

5(p/2)exp(2uj). In the numerical calculations discusse
below, it must be verifieda posteriorithat all integrands are
approximately constant nearumax. The application of this



.
e

xt
t

re

ca
un
he
e

on

tr
e
ng
th

al

ic
d
s

c
r

han

t,
ion

-

pic
pic

that

is-

i-

in
g

of
ng

r-
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discretization to Eqs.~20!–~22! is straightforward, but Eqs
~23! and ~29! have an additional complication due to th
term usin(g)u:

G5a~4ps1D lDu!2(
i 51

Nu

xiu i sin~u i !hi

3(
j 51

Nu

xju j sin~u j !hjWi j , ~35!

dG

dh
~ui !52~s1D l !2~eh i12e2h i !4pDu

3(
j 51

Nu

xju jsin~u j !hjWi j , ~36!

whereh i5h(ui), hi5exp(hi)1exp(2hi) andWi j is the dis-
cretized kernel@see Eq.~18!#

Wi j 5Df(
k51

Nf

usin@g~u i ,u j ,fk!#u, ~37!

with fk5kDf andDf52p/Nf . We takeNf51024. It is
convenient to calculate and store the values ofWi j prior to
iterating Eq.~30!.

We typically useNu5128 points. As discussed in the ne
subsection, the accuracy was checked by comparing with
results forNu564. We also verified that the results we
independent of the value ofumax over the range 10<umax
<24. Our criterion for convergence is that the change inh is
less than 1028 per iteration.

D. Results

Since the iterative scheme is explicitly a single-phase
culation, we reserve the discussion of phase coexistence
Sec. VI. In this section the ‘‘stable phase’’ refers to t
single ~isotropic or nematic! phase that has the lowest fre
energy at a given volume fraction. This should not be c
fused with global thermodynamic stability.

As expected, the iterative scheme converges to an iso
pic phase at low volume fractions and a nematic phas
high volume fractions. There is also a considerable ra
over which either phase may be found, depending on
initial choice forg. Table I shows some representative v
ues of the volume fraction forF53 andF510. The mini-
mum volume fraction for which we could find a nemat
phase isvmin . The volume fraction at which the isotropic an
nematic free energies are equal isvc , so the nematic phase i
metastable forvmin<v<vc . Above vc the isotropic phase is
metastable. Nearvc , the basin of attraction for the isotropi
phase is large, so convergence to a nematic distribution

TABLE I. Solute volume fractions discussed in the text.

F nmin nc n UB
it n UB

4 par

3 0.352 0.358 0.370 0.389
10 0.083 0.084 0.103 0.114
he

l-
til

-

o-
at
e
e

-

e-

quires a sharply peaked initial condition such asg(0)50.3
10.699 exp(23u).

In the isotropic phase convergence requires fewer t
200 iterations (;2 sec on an IBM RS/6000 computer!. The
resulting distribution function is approximately constan
with small systematic deviations due to the finite resolut
of the discretization. ForNu564 andumax524, the devia-
tions are of relative magnitude;0.1%. Increasing the num
ber of points toNu5128 or decreasingumax to 10 decreases
the magnitude of the deviations to;0.01%.

We make a further check on the accuracy of our isotro
phase results using the following calculation. In the isotro
phaseg(u)5gI and the integrals in Eqs.~12!–~15! can be
solved exactly,

s15
12gI

4p
, ^s&5

1

12gI
, C5

gI ln~gI !

12gI
,

~38!

G5
p

4
aD l 2~^s&21!2.

Substituting into Eq.~11! gives F tot@T,V,M,F;gI#. We then
find the value ofgI that minimizesF tot using a downhill
simplex minimization routine@24#. This allows us to calcu-
late all quantities with a relative accuracy of 1028. A com-
parison with the results of the iterative scheme shows
the discretization usingNu564 andumax524 gives values of
gI andF tot that are too large by;1%. HalvingDu improves
agreement to;0.1%.

In the nematic phase, we can only find a converged d
tribution at volume fractions nearvc . Figure 2 shows the
distributionsg and h for three values ofv at F53. The
distribution g is distinctly non-Gaussian. Note the approx
mately linear approach to 1 at smallu, with a cutoff that
decreases exponentially with the volume fraction. Atvc
50.358,u1'0.002. This illustrates the problem discussed
Sec. III A. It would be impractical to resolve the cutoff usin
a uniform discretization inu.

The number of iterations needed to find convergence
the nematic distribution grows exponentially with increasi
solute volume fraction. After aboutj 51000 iterations the

FIG. 2. Nematic distribution function calculated at three diffe
ent solute volume fractions:v50.352 ~—!, v50.358 ~¯!, and v
50.365 ~- - -!, with F53. The inset showsh to emphasize the
small-angle behavior.
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general shape ofg(u) is well established, including the lin
ear regime and a plateau at smallu, but the cutoff is typically
much larger than its converged value. The main effect
further iteration is to decrease the value of the cutoff,
proximately asu1

( j )'0.01/j 1/2, until it reaches a true limiting
value. The problem arises because the limiting value
creases exponentially with increasing volume fractionu1

(`)

;102170v ~see Fig. 2!. The number of iterations needed fo
the plateau to achieve its asymptotic form therefore increa
exponentially with volume fraction. Choosing a limit o
CPU time of about 1 day gives a practical upper boundvUB

it ,
on the volume fractions for which the nematic distributi
function can be determined. Values ofvUB

it for F53 and
F510 are listed in Table I. We see that the iterative sche
converges over a range of only 0.02 in volume fraction,
dependent ofvc . Attempts to speed convergence using
initial condition that anticipates the smallness of the cut
show only modest gains in speed.

In the nematic phase, the free energy converges sig
cantly faster than the distribution function. As a result,F tot
can be reliably determined for volume fractions greater th
vUB

it by as much as 0.25, typically after 104 iterations@see
Fig. 6~b! below#. At still higher concentrations,F tot con-
verges too slowly and we need a new method of solution
the next section we introduce a trial function to approxim
the distributiong. The trial function approach is much fast
than the iterative scheme and it allows us to minimizeF tot
over the full range of volume fractions. It also clarifies t
problems of convergence encountered in this section~see
Sec. IV B!.

IV. TRIAL FUNCTION FOR THE DISTRIBUTION

A. Trial function and approximate W

We seek an alternative to the iterative scheme of Sec.
To this end we present a trial function forg,

g~u!5H 12aR sin~u1!5g0 , 0<u<u1

12a sin~u!, u1<u<u2

12a sin~u2!5g2 , u2<u<p/2,

~39!

where we require 0,g0 andg2,1. This expression has fou
free parameters$a,R,u1 ,u2%. It was chosen because it ca
tures all the important qualitative features of the nema
distribution, including an approximately linear approach to
and a plateau at small angles. We will see thatR,1 in the
nematic phase, sog is discontinuous atu1 . Attempts to
eliminate any one of the parameters~e.g., by settingR51 or
u15u2! lead to poor agreement with the distributions fou
in Sec. III. The trial function was also chosen to make E
~12!–~14! almost completely integrable in terms of eleme
tary functions. The resulting expressions are presente
Appendix A.

The most computationally intensive term in the free e
ergy is Eq.~17!, the two-dimensional integral forG. Here we
make an analytic approximation for the kernelW @see Eq.
~18!# which, in combination with the trial function, simplifie
Eq. ~17! considerably. In the domain 0<u8<u<p/2, we
approximate
f
-

e-

es

e
-
n
f

fi-

n

n
e

I.

c

.
-
in

-

W̃~u,u8!5sin~u!S 11c
sin2~u8!

4 sin2~u!
@122 sin2~u!# D ,

~40!

wherec51.3. This form is suggested by the Taylor seri
for W in powers of sin(u8), given by c51 and derived in
Appendix B. A comparison ofW̃ with W using MATH-

EMATICA ~Wolfram Media, Cambridge! shows that the rela-
tive error of Eq.~40! is less than 7% over the whole domai
In Appendix C we solve Eq.~17! in terms of elementary
functions of $a,R,u1 ,u2%, with the exception of one one
dimensional integral to be calculated numerically.

The trial function solution requires the minimization o
F tot with respect to the four parameters$a,R,u1 ,u2% at fixed
v and F. We use a downhill simplex minimization routin
@24#. At low volume fractions we recover the isotropic di
tribution characterized byu15u2 , R51, and gI51
2a sin(u1). The value ofgI is not identical to the value
found in Sec. III D due to the approximation used here
W, but the resulting errors in̂s& and F tot are ;0.1% and
;0.01% respectively. The main advantage of the trial fu
tion is in the treatment of the nematic phase. When conv
gence can be found~see below!, the algorithm requires abou
0.1 sec of CPU time.

B. Determination of R and u1 in the nematic phase

Our first attempts to minimizeF tot with respect to the four
parameters$a,R,u1 ,u2% depended sensitively on the nu
merical precision of the calculation. To understand this s
sitivity, we expand the expressions in Appendixes A and
for s1 , ^s&, C, andG to leading order inu1 . Each has the
form

I ~a,R,u1 ,u2!5I 0S a,u2 ,z52 ln~u1!1
1

2R2D
1u1I 1~a,R,u1 ,u2!. ~41!

As a result, the independent determination ofR and u1 re-
quires a precision of orderu1 . This does not pose a difficulty
nearvc , but u1 decreases exponentially with increasing vo
ume fraction. Table I lists the approximate upper boundvUB

4 par

on the range of volume fractions accessible to the fo
parameter solution atF53 andF510. Even with 32 sig-
nificant figures,R and u1 can only be independently dete
mined over a range of about 0.03 in volume fraction. Outs
this range, numerical techniques can only reliably determ
the three parameters$a,z,u2%. We do not consider this to be
a prohibitive drawback since the integrals in Appendixes
and C, and hence the free energy, can be determined to
precision over the full range of volume fractions 0,v,1.

These observations may help clarify the slow conv
gence of the iterative solution in Sec. III. For the trial fun
tion, one value ofz parametrizes a large set of distribution
that differ only in their small-u behavior and whose free
energies are within orderu1 of each other. In other words
the free energy landscape in$R,u1% has a narrow valley
whose floor has a very shallow slope. The same is appare
true for the exact solution. The relatively rapid convergen
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of F tot in Sec. III finds the valley. The slow convergence
the distribution is due to the shallow slope within the valle

If values for$R,u1% are desired forv.vUB
4 par, we can take

advantage of the analytic form for the free energy in terms
the trial function parameters. We need the value ofR that
satisfies~note the change of independent variables!

]

]R
F tot~a,R,z,u2!50. ~42!

From Eq.~41! we see that the derivative is proportional
u1 . Using the expressions in Appendixes A and C we co
calculate the derivative to leading order inu1 , divide outu1 ,
and find the root using standard methods. The full calcu
tion would be too long to attempt here. Instead, we ta
advantage of the following observation. In the range of v
ume fractions where we can determineu1 and R indepen-
dently, the minimum ofF tot coincides approximately with
the minimum

]

]R
G0~a,R,z,u2!50, ~43!

whereG0 is the contribution toG due to the leading-orde
term in the Taylor series ofW @setc50 in Eq. ~40!; see the
Appendixes#.

We therefore propose the following algorithm for the i
dependent determination ofR andu1 . ~i! Given values forF
andv, fix R51 and minimizeF tot with respect to the three
parameters$a,z,u2%. From Eq.~41! we expect that the pa
rameters and the free energy found in this way will have
error of orderu1 . ~ii ! Solve Eq.~43! for R using the values
for $a,z,u2% found in step~i!. Then u15exp(2z11/2R2).
Although this only provides approximate values forR and
u1 , it has a significant advantage. Step~ii ! can be doneana-
lytically. Writing G05a(4ps1D l )2I ~see Appendix C!, Eq.
~43! is

05
]

]R
G0~a,R,z,u2!5a~4pD l !2S 2s1

]s1

]R
I 1s1

2 ]I

]RD ,

~44!

]

]R
s1~a,R,z,u2!52ps1

2 e2z11/2R2

aR4 ~12R!2, ~45!

]

]R
I ~a,R,z,u2!52

e2z11/2R2

5a4R7 ~12R2!

1
e2z11/2R2

2R4 ~12R!2f , ~46!

f 5
2

a3 @u22a1a cos~u2!#

1
g2

a~12g2!2 S p

2
2u21

sin~2u2!

2 D . ~47!

Substituting Eqs.~45!–~47! into Eq. ~44! and eliminating
common terms gives
.

f

d

-
e
-

n

c2R3~12R!2c1~11R!50,
~48!

c15
1

5a4 , c25
4ps1I

a
1

f

2
.

The quartic polynomial inR can be solved exactly. It ha
two real roots, but only one corresponds to the minimum
G0 :

R5
1

4
1

b1
1/2

2
2

1

2
A3

4
1

128c1 /c2

4b1
1/2 2b1, ~49!

b15
1

4
1

5c1

3b2
1/31

b2
1/3

c2
, ~50!

b25
c1c2

2 S c11c21Ac1
2 1c2

2 2
446

27
c1c2D . ~51!

This is our prescription forR in terms of$a,z,u2%. We will
refer to this as the (311)-parameter solution to distinguish
from the four-parameter solution, in which we minimizeF tot
with respect to$a,R,u1 ,u2%.

C. Results

In this section we present representative results, obta
for F53. Figure 3 shows a comparison of the nematic d
tribution function derived in Sec. III to the results of th
four-parameter and (311)-parameter calculations, all atv
50.365. We see good qualitative agreement between
three. In particular, the linear approach to 1 and the plat
at smallu are well represented.

Figure 4 shows the trial function parameters as a funct
of volume fraction in the nematic phase, calculated using
(311)-parameter solution. The most surprising feature
the enormous range ofu1 values, 1023– 1021018

. This is the
source of the numerical difficulties discussed above.

It is instructive to compare the results of th
(311)-parameter solution to the four-parameter solut
over the limited range of volume fractions where the lat
can be accurately determined. AtF53, the minimum vol-
ume fraction for which a nematic phase can be found

FIG. 3. Nematic distribution function atv50.365 andF53,
calculated using the iterative scheme of Sec. III~—!, the four-
parameter trial function~¯!, and the (311)-parameter trial func-
tion ~---!.
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vmin50.352 and the upper bound on the four-parameter s
lution due to numerical limitations isvUB

4 par50.389. Within
this range the free energies differ by less than 1%. Figu
5~a! compares the values of the trial function parametersa,
u2 , and R. Agreement is typically within a few percent,
although theR values differ by as much as 11%. Figure 5~b!
compares the values ofu1 . Sinceu1;exp(1/2R2) at fixedz,
we find much larger differences in the values ofu1 . It should
be noted that the u1 values found using the
(311)-parameter solution are still orders of magnitude mo
accurate than those found using the arbitrary choiceR51.

FIG. 4. Four trial function parameters versus solute volum
fraction atF53, calculated using the (311)-parameter solution.

FIG. 5. Trial function parameters versus solute volume fractio
at F53, calculated using the four-parameter solution~—!, the (3
11)-parameter solution~---!, and the three-parameter solution
found by settingR51 ~¯!.
o-

re

e

Figures 6 and 7 show further results for th
(311)-parameter solution. The value of the isotrop
nematic crossover isvc50.358, within 0.01% of the value
found in Sec. III. Figure 6 shows the mean cylinder leng
^ l &5D l (^s&21) versus volume fraction. Atvc the length
increases abruptly from 3.7a to 11.9a, in agreement with the
expectation that orientational ordering decreases the s
hindrance to polymerization~Refs. @13# and @25# found
qualitatively similar results!. The mean length increase
faster than exponentially with increasing volume fraction a
diverges atv51. Figure 7 shows the free energy versus s
ute volume fraction.F tot asymptotically approaches 0 atv
51 because the number density of spherocylindersn
;v/^s& approaches 0. The inset of Fig. 7 compares the f
energy results of the (311)-parameter trial function to the
results of the iterative scheme after 1000, 3000, and 10
iterations. It is clear that the iterative scheme is converg
to the 311 values. After 3000 iterations the difference
less than 2% forv,0.55. These observations give us con
dence in the accuracy of the (311)-parameter solution.

V. APPROXIMATE RESULTS FOR V˜1

We can use the trial function results to motivate a use
simplification of the free energy~11! at high volume frac-

e

n

FIG. 6. Mean cylinder length versus solute volume fraction
F53, calculated using the (311)-parameter solution~—! and the
approximate solution derived in Sec. V~---!. Note the isotropic-
nematic crossover.

FIG. 7. Free energy versus solute volume fraction atF53 cal-
culated using the (311)-parameter solution. Isotropic-nemat
crossover atvc50.358. Inset: comparison in the nematic phase
the results of the iterative scheme after 103 ~¯!, 33103 ~---!, and
104 ~—¯! iterations.
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5942 PRE 58ERIC M. KRAMER AND JUDITH HERZFELD
tions. As mentioned above, the mean length^ l & grows with-
out bound asv→1. We also find thatG/(a2^ l &)→0. Refer-
ring to the definition ofG in Eq. ~8!, this implies that the rods
are nearly parallel. These two conditions allow us to simp
the coefficients in the configuration integral@Eqs. ~6! and
~7!# to B→6v/n andC→4(v/n)2, where we have used th
fact that pa2^ l &→v/n. We also find empirically that the
orientational entropy per rod, ln(4ps1)1C in Eq. ~11!, tends
toward zero with increasing volume fraction. These obser
tions suggest the approximate free energy

bF̃ tot@T,V,M ,F;n#

V

5nH F211 lnS na3

12v D13S v
12v D1

4

3 S v
12v D 2J ,

~52!

which we expect to be accurate at high volume fractio
~We will consistently use a tilde to distinguish the appro
mate results derived in this section.! Note thatF̃ tot depends
on the distribution only through the spherocylinder numb
densityn5m/^s&.

Equation~52! illustrates the competing terms that dete
mine n. The end cap energyF and the excluded volume
terms favor a low number densityn and therefore a high
mean polymerization. The only term that favors a highn is
the entropy of mixing, which entersF̃ tot asn$ ln(na3)21%.

We can find approximate closed form expressions forF tot
and n by minimizing Eq. ~52! with respect ton. Solving
dF̃tot /dn50 gives

ñ5S 12v
a3 DexpF2F23S v

12v D2
4

3 S v
12v D 2G ~53!

and bF̃ tot /V52ñ. Note thatñ→0 asv→1. These expres
sions show excellent agreement with the trial function res
for F53 andF510 ~see Sec. IV!. The plot of mean cylin-
der length in Fig. 6 is typical. The error is about 20% atv
50.5 and less than 1% forv>0.7. The closed expression
seem to be exact asv→1.

VI. THERMODYNAMIC QUANTITIES

A. Definitions

Once the distribution function has been found, we c
calculate all the thermodynamic quantities of interest. In p
ticular, the pressure is

bp52
]

]V
bF tot@T,V,M ,g~u!#

5
n

12v
1

B

2 S n

12v D 2

1
2C

3 S n

12v D 3

, ~54!

and the monomer chemical potential is

bm5
]

]M
bF tot@T,V,M ,g~u!#5

1

M
~bF tot1bpV!.

~55!
-

.

r

ts

n
r-

We define the reduced chemical potentialm* 5bm and the
reduced pressurep* 5bpV1 , whereV154pa3/3 is the vol-
ume of a monomer.

There are two ways of defining an order parameter
polydisperse systems. The number-averaged order param
is

Sn5 (
s51

` E dV ss~V!P2@cos~u!#

54ps1E
0

p/2

du sin~u!
1

12g~u!
P2@cos~u!#, ~56!

and the mass-averaged order parameter is

Sm5
1

^s& (
s51

`

sE dV ss~V!P2@cos~u!#

5
4ps1

^s& E
0

p/2

du sin~u!
g~u!

@12g~u!#2 P2@cos~u!#,

~57!

where P2(x)5(3x221)/2 is the second-order Legend
polynomial. Birefringence studies measureSm . Substitution
of the trial function gives

Sn5
ps1

a H ~u22u1!1S 1

R
2

3

2D sin~2u1!1
1

2
sin~2u2!J ,

~58!

Sm5
4ps1

a2^s& H S 1

2R2 2
3

2D cos~u1!1cos~u2!1 lnS tan~u2!

tan~u1! D J .

~59!

B. Results

We again pick the representative valueF53. Figure 8~a!
shows the reduced pressure versus solute volume frac
The (311)-parameter solution is accurate over the wh
range. We see a large drop in the pressure at the crossov
the nematic phasevc50.358. The iterative solution afte
10 000 iterations differs from the (311)-parameter solution
by less than 2% forv&0.55. The approximate free energ
derived in Sec. V gives an estimate for the pressure tha
accurate to about 25% atv50.5 and better than 1% forv
>0.7. Note that the pressure decreases monotonically to
as the volume fraction increases, implying that the en
nematic phase is thermodynamically unstable. This beha
will be discussed in the next subsection. Figure 8~b! shows
Sm and Sn in the nematic phase. The mass-averaged or
parameter goes rapidly to 1 with increasing volume fracti
Surprisingly, the number-averaged order parameter rem
small and decreases toward 0. This is another consequen
the increasing sharpness ofg.

C. Singularity at v51

The free energy~11! has a singularity atv51, as do all
scaled particle treatments. A more accurate free ene
would presumably diverge at or below the close-packed v
ume fraction, but this should not make a qualitative diffe
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ence in the resulting phase diagram. In this paper we ass
that the solute volume fraction can increase tov51.

The two conditions for phase coexistence are equality
pressures p(I )5p(N) and chemical potentialsm(I )
5m(N). Phase coexistence will therefore appear as an in
section on a plot of chemical potential versus pressure.
ure 9 shows the reduced chemical potential versus the
duced pressure forF53. The solid line, calculated forv
,1, shows no intersection. The singularity provides
missing branch of the nematic pressure curve. We there
expect to find coexistence between an isotropic phase
volume fraction v(I ),vc and a nematic phase wit
v(N)51.

To find the contribution to the pressure due to the sin
larity at v51, we make a careful treatment of the thermod
namic limits V→` and M→`. Consider the limiting ex-
pression for the pressure~54! as v→1. From the results of
Sec. V we have

bp ;
v→1

n
8/3

~12v !3 . ~60!

We see thatp→0 asv→1 is a consequence of the fact th
n→0 faster than (12v)23 diverges. For an infinite box
there is no limit to this trend. However, in a cubic box of si
L, the number of rods cannot decrease belowL2/(pa2), so
n>1/pa2L. Therefore,

FIG. 8. ~a! Reduced pressure and~b! mass-averaged an
number-averaged order parameters versus solute volume fracti
F53, calculated using the (311)-parameter solution~—!, the it-
erative scheme after 104 iterations~•!, and the approximate solutio
of Sec. V~---!.
me

f

r-
g-
e-

e
re
th

-
-

bp ;
v→1 1

pa2L

8/3

~12v !3 , ~61!

which diverges atv51. A similar calculation gives

bm ;
v→1 4a

3L

8/3

~12v !3 5bpV1 . ~62!

These expressions depend on the box size and are only
nificant for 12v&(a/L)1/3, but the plot of chemical poten
tial versus pressure isbm5bpV1 independentof the box
size. We show in Appendix D that this expression is valid
any sufficiently steep increase in the pressure. It does
depend on the specific form of the free energy.

The branchbm5bpV1 appears as the dotted line in Fig
9. We see that the isotropic phase coexists with a per
nematic phase atm* 5p* 50.245. The volume fraction o
the isotropic phase isv(I )50.199. We have repeated th
calculation for a range of end cap energiesF. Figure 10
shows the resulting phase diagram. As expected, an incr
in F promotes the assembly of longer rods and favors
nematic phase.

VII. RESTRICTED ORIENTATION APPROXIMATION

The problem of self-assembling rods has often been s
plified by restricting the rod orientations to three mutua
orthogonal axes~often called theXYZ model! @26,27#. One
can convert our free energy~Sec. II! to an XYZ model by
discretizing the angular integrations

E dVA„g~V!…→
4p

6 (
i 5$6 x̂,6 ŷ,6 ẑ%

A~gi !

5
4p

6
$2A~g'!14A~gi!%, ~63!

G→aS 4p

6
s1D l D 2H 16

gi

~12gi!
2

g'

~12g'!2 18
g'

2

~12g'!4 J ,

~64!

at

FIG. 9. Reduced chemical potential versus pressure atF53.
The solid line is calculated away from the singularity atv51. The
dotted line is the contribution from the perfect nematic phase av
51. The circle labelsI -N coexistence atm* 5p* 50.245.
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5944 PRE 58ERIC M. KRAMER AND JUDITH HERZFELD
where the sum over the six directions has been simpli
using the expected axial symmetry of the solution. The v
ues gi and g' are taken parallel and perpendicular to t
nematic director, respectively. To solve we specifyF andv
and use a downhill simplex routine to minimizeF tot with
respect togi andg' .

Figure 11 shows a comparison of the pressures for
XYZ model and the (311)-parameter trial function atF
510. The positions of the isotropic phase boundaries co
pare well, but we otherwise see qualitative disagreem
The restricted orientation model underestimates the pres
by a factor of 4. Also note the second phase transition fr
a dilute nematic phase to a dense nematic phase predicte
the XYZ model. The nematic-nematic transition occurs
all F.8.5. For values ofF,8.5, there is improved agree
ment between theXYZ and (311)-parameter results. Ther
is a single phase transition from an isotropic phase to
nematic phase atv(N)51. The pressure is still underest
mated by about 30% atF53.

Qualitatively similar behavior was found by Herzfeld an
co-workers in their theoretical studies of amphiphile se
assembly. Herzfeld and Taylor used a restricted orienta

FIG. 10. I -N phase diagram as a function of solute volum
fraction and end cap energy cost.I denotes the isotropic phase
Dotted tie lines connect the isotropic phase with the coexis
nematic phase atv51.

FIG. 11. Reduced pressure versus solute volume fraction aF
510. Comparison of the results of the (311)-parameter~con-
tinuum! solution with theXYZ solution is shown. Dotted lines
show the single-phase values. Solid lines show phase coexist
Note that there are two nematic phases in theXYZ solution.
d
l-

e

-
t.
re

by
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e

-
n

model and found a nematic-nematic transition, in addition
the expected isotropic-nematic transition, over a limit
range ofF values@28#. Hentschke and Herzfeld repeated t
calculation using a continuum of orientations and found
nematic-nematic transition@19#.

VIII. CONCLUSIONS

In this paper we clarify the numerical difficulties encou
tered in solving a quantitative model of self-assembli
spherocylinders, including the coupling between assem
and nematic order. The main quantity of interest is the eq
librium distribution of spherocylinder orientations an
lengths. We begin with a transformation of the distributi
and derive a nonlinear integral equation suitable for use a
iterative solution. Numerical iteration gives a monotonic d
crease in the free energy and an incremental refinemen
the distribution. In the isotropic phase the distribution co
verges rapidly. In the nematic phase the number of iterati
required for convergence increases exponentially with
creasing concentration, so an accurate distribution can o
be found over a limited concentration range.

In the accessible range of nematic concentrations, we
that the distribution isnot approximately Gaussian. Rather,
exhibits approximately linear behavior at small angles bef
reaching a plateau at a cutoffu1 . The cutoff decreases ex
ponentially with increasing volume fraction. This is the p
mary source of numerical difficulties since any discretizat
of the distribution must either resolve this cutoff or treat it
closed form. In calculations not presented here, we h
verified that the linear regime and the smallness ofu1 are not
unique to the scaled particle expression for the effects
excluded volume@see Eq.~5!#. Onsager’s second virial ap
proximation @7# and the expression used by Hentschke a
Herzfeld@19# yield qualitatively similar results. These obse
vations provide a counterpoint to the common assump
that the nematic orientation distribution in self-assembl
systems is Gaussian.

To extend the results to the full range of nematic conc
trations, we introduce a trial distribution function that repr
duces the qualitative features of the iterative solution. T
allows us to solve most of the desired integrals in clos
form and to treat some aspects of the solution analytica
The results of the trial function calculation suggest an
proximate free energy for the nematic phase, valid for h
volume fractions. From this we derive closed expressions
the free energy and the mean polymerization that are a
rate to 1% forv.0.7 and seem to beexact in the limit v
→1.

We find that the mean aggregation number in the nem
phase diverges at 100% solute volume fraction.~The diver-
gence is above close packing due to our use of scaled par
theory.! As a result, the spherocylinder number density d
creases to 0, as does the pressure. The only thermodyn
cally stable nematic phase has infinite mean polymeriza
and volume fractionv51, indicating the formation of dens
nematic crystallites in an otherwise isotropic solution. Th
agrees with the previous approximate results of Odijk@17#
and van der Schoot and Cates@18#, who conclude that the
absence of a dilute nematic phase is due to the perfect ri
ity of the rods. Flexibility will be relevant whenever th

g

ce.
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mean filament length exceeds the persistence length.
proximate theories suggest that flexibility will smooth o
the small-u behavior of the orientation distribution and st
bilize the nematic phase at lower volume fractions@17,29#.
Another mitigating factor is the possibility of soft repulsion
between the particles, which increase the relative cost of
dense phase and narrow the coexistence region@2#.

The experimental systems that come closest in spiri
the present work are solutions of cylindrical micelles@6#,
sickle-cell hemoglobin@3,2#, actin filaments@4#, and micro-
tubules @5#. All exhibit self-assembly and an isotropic
aligned phase transition as the solute concentration is
creased. However, in all cases the width of the ph
coexistence region is much narrower than predicted h
Actin filaments and surfactant micelles have significant el
trostatic repulsion and are typically much longer than th
persistence length. Microtubules and sickle cell hemoglo
filaments are less flexible, but soft repulsions are still
lieved to be relevant@30#.
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APPENDIX A: INTEGRALS S1 , Šs‹, AND C

Substituting the trial function~39! into Eqs.~12! and~13!
gives

s15F4pE
0

p/2

du sin~u!
1

12g~u!G21

5F4pS 12cos~u1!

12g0
1

u22u1

a
1

cos~u2!

12g2
D G21

, ~A1!

^s&54ps1F12cos~u1!

~12g0!2 1
1

a2 lnS tan~u2/2!

tan~u1/2! D1
cos~u2!

~12g2!2G .
~A2!
a
t

e
do
p-

e

o

n-
e
e.
-

ir
in
-

The integralC in Eq. ~14! is

C54ps1F g0ln~g0!

~12g0!2 @12cos~u1!#1
I A

a2

1
g2ln~g2!

~12g2!2 cos~u2!G , ~A3!

I A5E
u1

u2
du

ln@12a sin~u!#

sin~u!
, ~A4!

where the integralI A cannot be solved in terms of eleme
tary functions. We calculateI A by discretizing atNu points.
Then

I A5Du(
j 51

Nu

yj

ln@12a sin~u j !#

sin~u j !
, ~A5!

where u j5u11( j 21)Du, Du5(u22u1)/(Nu21), y1
5yNu

51/2, andyj Þ1,Nu
51. We useNu532, for which Eq.

~A5! may have an error of 1%. In practiceI A makes a rela-
tively small contribution toF tot .

APPENDIX B: APPROXIMATION FOR W

We seek an approximation for the kernelW defined in Eq.
~18!:

W~u,u8!5
1

2p E
0

2p

dfusin~g!u, ~B1!

cos~g!5cos~u!cos~u8!1sin~u!sin~u8!cos~f!. ~B2!

Begin with the Taylor series forW(u,u8) at small sin(u8) in
the domain 0<u8<u<p/2. We use trigonometric identitie
to rewrite Eq.~B2!:
sin~g!5sin~u!A12sin~u8!S 2 cos~u8!cos~f!

tan~u! D1sin2~u8!S 1

tan2~u!
2cos2~f! D . ~B3!
he
Expanding the square root to second order in sin(u8) and
integrating overf gives

W~u,u8!5sin~u!S 11c
sin2~u8!

4 sin2~u!
@122 sin2~u!# D ,

~B4!

wherec51. This expression was compared to accurate d
for W usingMATHEMATICA. The relative error is only 2% a
small u8, but this increases to 15% foru8 nearp/2.

With the choicec51.3, some accuracy is lost near th
origin, but agreement is better than 7% over the whole
ta

-

main. To illustrate the accuracy of the approximation, in t
isotropic phase we find

^sin~g!&5
p

2
2

2

3
2

1.3

10
50.774. . . , ~B5!

which is only 1.4% less than the exact valuep/4
50.785 . . . .

APPENDIX C: INTEGRAL G

Substituting the approximate kernelW̃ into Eq.~17! gives
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G52a~4ps1D l !2E
0

p/2

du
g~u!

@12g~u!#2

3E
0

u

du8
g~u8!

@12g~u8!#2 H K0~u,u8!1
c

4
K1~u,u8!J ,

~C1!

where we have broken the kernelK into two pieces:

K0~u,u8!5sin2~u!sin~u8!, ~C2!

K1~u,u8!5sin3~u8!@122 sin2~u!#. ~C3!

K0 is due to the zeroth-order term in the Taylor series ofW
@see Eq.~B4!# and K1 is due to the second-order term. W
have split the kernel in this way to clarify the integration
Figure 12 shows the division of the integral forG into six
domains

G52a~4ps1D l !2(
i 51

3

(
j 51

i H I i , j
0 1

c

4
I i , j

1 J , ~C4!

I i , j
k 5E

i
du h~u!E

j
du8h~u8!Kk~u,u8!, ~C5!

whereh5g/(12g)2. The integralsI i , j
k can all be solved in

terms of elementary functions with the exceptionI C indi-
cated below:

I 1,1
j 5h0

2 F j~0,u1!, ~C6!

I 3,3
j 5h2

2 F j~u2 ,p/2!, ~C7!

F0~u1 ,u2!5H 1

2
cos~u1!S u2

sin~2u!

2 D2
1

3
sin3~u!J

u1

u2

,

~C8!

F1~u1 ,u2!5H 1

6
cos~u1!@21sin2~u1!#2

2

3
sin~u!

1
1

3
sin3~u!1

2

15
sin5~u!J

u1

u2

, ~C9!

FIG. 12. Domains of integration used in the calculation ofG.
.

I 2,1
0 5h0@12cos~u1!#H 1

a2 u1
1

a
cos~u!J

u1

u2

, ~C10!

I 2,1
1 52h0c1H 1

a2tan~u!
1

2

a2 u

1
1

a
ln@ tan~u/2!#1

2

a
cos~u!J

u1

u2

, ~C11!

c15
2

3
@12cos~u1!#2

1

3
cos~u1!sin2~u1!, ~C12!

I 3,1
0 5h0h2

1

2
@12cos~u1!#S p

2
2u21

sin~2u2!

2 D ,

~C13!

I 3,1
1 52

1

2
h0h2c1sin~2u2!, ~C14!

I 3,2
0 5

h2

2 S p

2
2u21

sin~2u2!

2 D H 1

a2 ln~u/2!2
u

a J
u1

u2

,

~C15!

I 3,2
1 5

h2

2
sin~2u2!H 1

a2 cos~u!1
1

2a S u2
sin~2u!

2 D J
u1

u2

,

~C16!

where h05g0 /(12g0)2, h25g2 /(12g2)2, and $A(u)%u1

u2

5A(u2)2A(u1).
The integrationI 2,2 involves four pieces. Rewritingh for

u1<u<u2 ,

h5
1

@a sin~u!#2 2
1

a sin~u!
, ~C17!

gives

I 2,2
j 5

1

a4 I s2s2
j

2
1

a3 I s2s
j

2
1

a3 I ss2
j

1
1

a2 I ss
j , ~C18!

I sksl
j

5E
u1

u2
du

1

sink~u!
E

u1

u

du8
1

sinl~u8!
K j~u,u8!,

~C19!

I ss
0 5$sin~u!2cos~u2!u%u1

u2, ~C20!

I s2s
0

5
1

2
~u22u1!2, ~C21!

I ss2
0

5$2cos~u2!ln@ tan~u/2!#1 ln@sin~u!#%u1

u2, ~C22!

I s2s2
0

5$u2ln@ tan~u/2!#%u1

u22I C , ~C23!

I C5E
u1

u2
du

u

sin~u!
5Du(

j 51

Nu

yj

u j

sin~u j !
, ~C24!
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where I C is the second integral that must be calculated
merically @see Eq.~A5! for notation#. The remaining inte-
grals are

I ss
1 5H 2S u12

sin~2u1!

2 D S 1

2
ln@ tan~u/2!#1cos~u! D

2
3

2
sin~u!1

1

3
sin3~u!1u cos~u!J

u1

u2

1
1

2
I C , ~C25!

I s2s
1

5
1

2 H S u12
sin~2u1!

2 D S 1

tan~u!
12u D

2
u

tan~u!
1sin2~u!2u2J

u1

u2

, ~C26!

I s2s2
1

5H 2cos~u1!S 1

tan~u!
12u D1

1

sin~u!
12 sin~u!J

u1

u2

,

~C27!

I ss2
1

5$cos~u!ln@ tan~u/2!#2 ln@sin~u!#1sin2~u!

12 cos~u1!cos~u!%u1

u2. ~C28!

APPENDIX D: SINGULAR BRANCH IN THE P-µ PLANE

Consider a Helmholtz free energy of the for
F tot@T,V,M,ss(V)#5Fns1Fs , whereFns contains all nonsin-
gular terms andFs diverges atvs and is only appreciably
different from zero in the infinitesimal neighborhoo
ol

o-

.

-vs2e<v<vs . @In Sec. VI C, vs51 and e;(a/L)1/3!1.#
Since the free energy is an extensive quantity, we can w
Fs@T,V,M ,ss(V)#5V f@T,v,ss(V)#, wherev5MV1 /V is
the volume fraction. The pressure and chemical potential

p~v !52
]F tot

]V
5pns~v !2 f 1v f 8, ~D1!

m~v !5
]F tot

]M
5mns~v !1V1f 8, ~D2!

where f 85] f /]v and the subscript ns denotes the nonsin
lar contributions. We only need to show thatf !v f 8. Recall-
ing thatFs is negligible forv<vs2e and assuming thatf 8 is
montonically increasing, we find the bound

f ~v !5E
vs2e

v
dv8 f 8~v8!< f 8~v !~v2vs1e!. ~D3!

In the domainvs2e<v<vs this implies

f 8~v !>
f ~v !

v2vs1e
@ f ~v !, ~D4!

where we have used the fact thate!1. Equations~D1! and
~D2! thus give

m2mns~vs!5
V1

vs
@p2pns~vs!#. ~D5!

In Sec. V C, vs51 and pns(vs)5mns(vs)50, giving m
5V1p, the desired result.
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